
Modeling Markets, Pandemics, 
and Peace: The Mathematics of 
Multi-Agent Systems
Lecture 1
Introduction and the Reinforcement 
Learning Problem

MIT HSSP 
July 9th, 2022 (Starting 1:05)



Introductions

Sihao Huang
Physics (8) and Electrical Engineering (6-1) 

with a minor in Political Science

Julia Balla
Mathematics with Computer Science 

(18-C) with a minor in Economics

Email: C15061-teachers@esp.mit.edu



What is a multi-agent system?

Each cell has two states: either dead 
(white) or alive (black).

1) Any live cell with two or three live 
neighbors survives.

2) Any dead cell with three live 
neighbors becomes a live cell.

3) All other live cells die in the next 
generation. Similarly, all other dead 
cells stay dead.

Conway’s Game of Life



“Block”

“Loaf”

“Blinker”

“Beacon”

“Glider”

“Lightweight 
Spaceship”

Still life Oscillators Spaceships



Life in Life



Deep reinforcement learning: (far) more 
sophisticated agents



Instead of operating on fixed rules, RL agents are 
able to learn and adapt



Beating world champions at Starcraft



Agent complexity

Nu
m

be
r o

f a
ge

nt
s

AlphaStar
AlphaGo

Game of Life
Stock market

Human society

Human individual

Limits of 
understanding



A system with multiple intelligent agents



Outline of the Course

We want to find out how…

• Individual agents learn and interact with the environment
• Multiple agents come together to create emergent phenomena
• To relate this model to humans and social behavior

Lecture 1

Introduction and 
the RL problem

Lecture 2

How computers 
learn

Lecture 3

How people learn

Lecture 4

Multi-agent 
systems

Lecture 5

Interactions on 
graphs

Lecture 6

Complex systems 
science



What is reinforcement learning?

Reinforcement learning (RL) is concerned with an agent's ability to learn by 
interacting with its environment.

How do we mathematically model this learning process?



The agent-environment interaction loop

Agent Environment

action

reward

state



The agent-environment interaction loop

Agent Environment

action at

rt+1 st+1

state st

reward rt

(s0, a0, r1, s1)
(s1, a1, r2, s2)
…
(st , at, rt+1, st+1)

Agent's goal: Find a policy π: S ⟶ A mapping states to actions that maximizes reward
(i.e. maximize r0 + r1 + … + rT )

A policy states that if the agent observes state st, it should take action at = π(st)

π



Example: RL to make AI Snake

The snake's goal is to eat as much food as 
possible without crashing into the walls or 
itself.

At each timestep t, the snake can move 
up, down, left, and right in the grid.

Each time it eats a food item, the length 
of the snake grows and a new food 
item spawns randomly.

If it crashes, the game is over.

We can use RL to train the AI to learn the rules and play on its own.



The RL model of Snake

Components of the RL model:

Agent?

Environment?

Snake

Walls, apples, snake's body

Actions? Moving up/down/left/right

States?

Rewards? (+1) for eating food
(-1) for crashing
0 for everything else



Example iteration (positive reward)

Environment

at = "move right"

st+1 =

rt+1 = +1

Agentπ



Example iteration (negative reward)

Environment

at = "move up"

st+1 =

rt+1 = -1

Agentπ



Example iteration (no reward)

Environment

at = "move up"

st+1 =

rt+1 = 0

Agentπ



Through trial and error, the snake learns how to play!



Modelling uncertainty
In the Snake example, most states are fully determined by the snake's actions

st st+1

at = "move up"

However, there is uncertainty when new food spawns in a random location

at = "move right"

st st+1
We need to model the probability of the state transitioning from st to st+1



Ideally, we want the probability of transitioning to state st+1 to depend only on:
§ Current state st
§ Action at

st should summarize all immediate and previous information such that the 
agent doesn't have to keep track of the complete history (s0, a0, r1, s1, …,st-1, 
at-1, rt, st )

State transition probabilities

Such states are said to be Markovian, or have the Markov Property.



The value function

+1 reward (eating an apple) -1 reward (death) 0 reward: what to do??

Even though the agent is getting zero reward, some states are better than others because they 

allow us to get future rewards. We assign these states higher values 𝑣!(𝑠).

Note: the reward is computed by the environment, while the value is computed by the agent. 



Some states are better than others

0 reward 0 reward

To determine the value of the current state, we want to look ahead to possible future states and see 

how close we are to getting the reward.



Estimating the value function

Since the state is Markovian, there is a unique value for 
each state and policy choice

Average over all the 
possible trajectories 
under a given policy

Of all the future 
rewards obtained in 
that trajectory

Starting from 
our current 
state

𝑣% 𝑠& = 𝔼% %
'()

*

𝑅&+'+,|𝑆 = 𝑠&



Estimating the value function

0.4

0.8

0.8 -0.1

-0.70.4

Each state is assigned a value 𝑣! 𝑠" = 𝔼! &
#$%

&

𝑅"'#'(|𝑆 = 𝑠"

0 reward 0 reward

This solves our problem of not knowing where to go: 

𝑣∗ 𝑠 = maximize!(𝑣! 𝑠 )

The optimal value function is given by 



Bellman’s equation

Since the state is Markovian, there is a unique value for 
each state and policy choice

𝑣% 𝑠& = 𝔼% %
'()

*

𝑅&+'+,|𝑆 = 𝑠&

Reward at the 
current state

Average reward from 
all the next states

“If I know the shortest path from Boston to DC runs through 
New York, then once I get to New York, I should just follow the 
shortest path from New York to DC.”

Bellman’s equation

= 𝑟 𝑠&, 𝑎& + 𝔼[𝑣% 𝑠&+, ]



Estimating the optimal value function

“If I know the shortest 
path from Boston to 
DC runs through New 
York, then once I get to 
New York, I should just 
follow the shortest path 
from New York to DC.”

Bellman’s equation
Current state of player 1

Player 2 
minimizes

Player 1 
maximizes

Rewards5 64 7 9 7 5 8

5 9 7 8

5 7

7𝑣∗ 𝑠 =



Combinatorial explosion
This fact helps us cut down our search space since we don’t need to worry about everything 
that happens from Boston to D.C. once we get to New York. 

But, computing the value function is still very hard, particularly when we have limited data.

3 moves

9 moves

Current state

3-) = 3,486,784,401
Grandmaster level: depth of 20



Towards deep reinforcement learning

They’re not supercomputers… they incorporate intuition.

3-) = 3486784401
Grandmaster level: depth of 20

Next lecture: deep reinforcement learning



§ Our life is easier when states are Markovian (the future depends only on the current state and 
not the past)

§ Bellman's equation:

§ Optimal value function:

𝑣% 𝑠& = 𝔼% %
'()

*

𝑅&+'+,|𝑆 = 𝑠&

Recap of RL

Agent Environment

action at

state st

reward rt

rt+1 st+1

= 𝑟 𝑠&, 𝑎& + 𝔼[𝑣% 𝑠&+, ]

𝑣∗ 𝑠 = maximize!(𝑣! 𝑠 )

§ Policy π: S ⟶ A such that at = π(st)

§ Agent's goal = find policy that 
maximizes total reward

π



§ Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto
§ Teach AI to Play Snake – Reinforcement Learning Tutorial video
§ AlphaGo documentary
§ OpenAI Spinning Up RL Tutorial

References and additional resources

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.youtube.com/watch?v=PJl4iabBEz0&t=62s
https://www.youtube.com/watch?v=WXuK6gekU1Y
https://spinningup.openai.com/en/latest/user/introduction.html

