Algebra Math Notes • Study Guide Abstract Algebra

Table of Contents	
Rings	3
Rings	3
Subrings and Ideals	4
Homomorphisms	4
Fraction Fields	5
Integers	5
Factoring	7
Factoring	7
UFDs, PIDs, and Euclidean Domains	7
Algebraic Integers	8
Quadratic Rings	8
Gaussian Integers	9
Factoring Ideals	9
Ideal Classes	10
Real Quadratic Rings	11
Polynomials	12
Polynomials	12
$\mathbb{Z}[\tilde{X_1}]$	12
Irreducible Polynomials	13
Cvclotomic Polvnomials	
Varieties	14
Nullstellensatz	15
Fields	17
Fundamental Theorem of Algebra	17
Algebraic Elements	17
Degree of a Field Extension	
Finite Fields	
Modules	
Modules	21
Structure Theorem	
Noetherian and Artinian Rings	23
Application 1: Abelian Groups	
Application 2: Linear Operators	24
Polynomial Rings in Several Variables	25
Tensor Products	25
Galois Theory	27
Symmetric Polynomials	27
Discriminant	27
Galois Group	27
Fixed Fields	
Galois Extensions and Splitting Fields	
Fundamental Theorem	
Roots of Unity	
Cubic Equations	
Quartic Equations	
Quintic Equations and the Impossibility Theorem	

Transcendence Theory	
Algebras	
Division Algebras	33
References	34

	 6. If R is an integral domain, the cancellation law holds. Conversely, if the left (right) cancellation law holds, then R has no left (right) zero divisors. 7. A field is a division ring, and any finite integral domain is a field.
	From here on rings are assumed to be commutative with identity unless otherwise specified.
	A unit is an element with a multiplicative inverse. The characteristic of a ring is the smallest $n > 0$ so that $\underbrace{1 + \dots + 1}_{n} = 0$. If this is never true,
	the characteristic is 0.
1-2	Subrings and Ideals
	 A subring is a subset of a ring that is closed under addition and multiplication. An ideal I is a subset of a ring satisfying: I is a subgroup of R₊. If s ∈ I, r ∈ R then rs ∈ I. Every linear combination of elements s_i ∈ I with coefficients r_i ∈ R is in I.
	The principal ideal (<i>a</i>) = <i>aR</i> generated by <i>a</i> is the ideal of multiples of <i>a</i> . The smallest ideal generated by $a_1,, a_n$ is $(a_1, a_2,, a_n) = \{r_1a_1 + \dots + r_na_n r_i \in R\}$
	 Ideals and fields: 1. The only ideals of a field are the zero ideal and the unit ideal. 2. A ring with exactly two ideals is a field. 3. Every homomorphism from a field to a nonzero ring is injective.
	A principal ideal domain (PID) is an integral domain where every ideal is principal. Ex. \mathbb{Z} is a PID. If F is a field, $F[x]$ (polynomials in x with coefficients in F) is a PID: all polynomials in the ideal are a multiple of the unique monic polynomial of lowest degree in the ideal.
	A maximal ideal of R is an ideal strictly contained in R that is not contained in any other ideal.
1-3	Homomorphisms
	A ring homomorphism $\varphi: R \to R'$ is compatible with addition and multiplication: 1. $\varphi(a + b) = \varphi(a) + \varphi(b)$ 2. $\varphi(ab) = \varphi(a)\varphi(b)$ 3. $\varphi(1) = 1$
	An isomorphism is a bijective homomorphism and an automorphism is an isomorphism from R to itself. The kernel is $\{s \in R \varphi(s) = 0\}$, and it is an ideal.
1-4	Quotient and Product Rings (11.4,6)
	If I is an ideal R/I is the quotient ring . The canonical map $\pi: R \to R/I$ sending $a \to a + I$ is a ring homomorphism that sends each element to its residue. If $I = (a_1,, a_n)$, the quotient ring is obtained by "killing" the a_i , i.e. imposing the relations $a_1,, a_n = 0$.

	 <u>Mapping Property:</u> Let <i>f</i>: <i>R</i> → <i>R'</i> be a ring homomorphism with kernel K and let <i>I</i> ⊆ <i>K</i> be an ideal. Let π: <i>R</i> → <i>R/I</i> = <i>R</i> be the canonical map. There is a unique homomorphism <i>f</i>: <i>R</i> → <i>R'</i> so that <i>f</i>π = <i>f</i>. <i>R f R' R' R' R' R' R' R' R'</i>
	The product ring $R \times R'$ is the product set with componentwise addition and multiplication. 1. The additive identity is (0,0) and the multiplicative identity is (1,1). 2. The projections $\pi(x, x') = x, \pi'(x, x') = x'$ are ring homomorphisms to R, R' . 3. (1,0), (0,1) are idempotent elements- elements such that $e^2 = 1$. Let e be an idempotent element of a ring S. 1. $e' = 1 - e$ is idempotent, and $ee' = 0$. 2. eS is a ring (but not a subring of S unless e=1) with identity e, and multiplication by e is a ring homomorphism $S \rightarrow eS$. 3. $S \cong eS \times e'S$.
1-5	Fraction Fields
	Every integral domain can be embedded as a subring of its fraction field F. Its elements are $\left\{\frac{a}{b} \mid a, b \in R, b \neq 0\right\}$, where $\frac{a_1}{b_1} = \frac{a_2}{b_2} \Leftrightarrow a_1b_2 = a_2b_1$. Addition and multiplication are defined as in arithmetic: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}, \frac{a}{b} \frac{c}{d} = \frac{ac}{bd}$, and $\frac{a}{1} = a$. The field of fractions of the polynomial ring $K[x]$, K a field, is the field of rational functions $K(x)$.
	<u>Mapping Property:</u> Let R be an integral domain with field of fractions F, and let $\varphi: R \to F'$ be an injective homomorphism from R to a field F'. φ can be extended uniquely to an injective homomorphism $\Phi: F \to F'$ by letting $\Phi\left(\frac{a}{r}\right) = \varphi(a)\varphi(b)^{-1}$.
	$(b) \qquad \qquad$
1-6	Integers

Inductive/ Recursive Definition: By induction, if an object C_1 is defined, and a rule for determining $C_{n'} = C_{n+1}$ from C_n is given, then the sequence C_k is determined uniquely.
Recursive definition of 1. Addition: $m + 1 = m'$, $m + n' = (m + n)'$ (i.e. $m + (n + 1) = (m + n) + 1$) 2. Multiplication: $m \times 1 = m$, $m \times n' = m \times n + m$ (i.e. $m \times (n + 1) = m \times n + m$) From these, the associative, distributive, and distributive laws can be verified. ("Peano playing") The integers can be developed from \mathbb{N} by introducing an additive inverse for every element.

2	Factoring			
2-1	Factoring			
	Vocabulary			
	u is a unit	if <i>u</i> has a m in R	ultiplicative inverse	(u) = (1)
	a divides b	if $b = aq$ fo	some $a \in R$	$(b) \subseteq (a)$
	a properly divi	des b if $b = aq$ fo	some $a \in R$ and	$(b) \subset (a) \subset (1)$
		neither a no	or q are units	
	a and b are rela prime	atively <i>a</i> and <i>b</i> have except units	ve no common divisor	$(a) \cap (b) = (1)$
	a and b are ass	sociates if each divide $b = ua$, u a	les the other, or if	(a) = (b)
	a is irreducible	if a is not a proper divis	unit and has no or (its only divisors of associates)	$(a) \subset (1)$, and there is no principal ideal (c) such that $(a) \subset (c) \subset (1)$
	n is a nrime ele	ement if n is not a	unit and whenever n	$ah \in n \Rightarrow a \in (n)$
		divides <i>ab</i> , divides <i>b</i> .	p divides a or p	or $b \in (p)$
	 A size function is a function σ: R → N. An integral domain is an Euclidean domain if there a norm σ such that division with remainder is possible: For any a, b ∈ R, a ≠ 0, there exist q, r ∈ R so that b = aq + r, and r = 0 (in which case a divides b) or σ(r) < σ(a). Examples: For Z, σ(a) = a . For F[x], σ(f) = deg f. 			
	3. For $\mathbb{Z}[i]$, a	$\sigma(a) = a ^2.$		
	A characterization is d such that If e exist $p, q \in R$ so	In of the GCD: Let R be e a, b then $e d$. If R is a d = na + ab (Bezout).	e a UFD. A greatest c PID, this is equivalent <i>a</i> , <i>b</i> are relatively prim	to $Rd = Ra + Rb$, and there e iff d is a unit.
	 An integral domain is a unique factorization domain (UFD) if factoring terminates (stopping when all elements are irreducible), and the factorization is unique up to order an multiplication by units. The following are equivalent: Factoring terminates. R is Noetherian: it does not contain an infinite strictly increasing chain of principal ideals (a₁) ⊂ (a₂) ⊂ 			if factoring terminates tion is unique up to order and ncreasing chain of principal
	Class (Each includes the next) Ring	Definition	Reasons	Properties
	Integral	Ring with no zero		Prime element
	domain	divisors		irreducible

	Unique factorization domain (UFD)	 Integral domain where Factoring terminates Factorization unique or equivalently, every irreducible element is prime. 	For equivalence: If every irreducible element prime, and there are two factorizations, an element on the left divides an element on the right; they are associates and can be canceled.	Irreducible element prime GCD exists (factor and look at common prime divisors)
	Principal Ideal Domain (PID)	All ideals generated by one element	A PID is a UFD: 1- Irreducible element prime: $Rd = Ra + Rb \Rightarrow$ Bezout's identity. Irreducible element prime since $p ab, p \nmid a \Rightarrow 1 =$ $sp + ta \Rightarrow p b = spb + tab$ 2- Factoring terminates: If $(a_1) \subseteq (a_2) \subseteq \cdots$ then $\bigcup (a_i) = (b)$ is a principal ideal; $b \in (a_i)$ for some j.	Maximal ideals generated by irreducible elements
	Euclidean domain	Integral domain with norm compatible with division with remainder	A Euclidean Domain is a UFD: The element of smallest size in an ideal generates it.	Euclidean algorithm works. (Given a, b, write $a = qb + r$, replace a with b, b with r.)
E	Ex. $\mathbb{Z},\mathbb{Z}[i],F[x]$ a	re UFDs.		
A ii p A	An algebraic number is the root of an integer polynomial equation. It is an algebraic integer if it is the root of a monic integer polynomial equation. Equivalently, its irreducible polynomial over \mathbb{Z} is monic. A rational number is an algebraic integer iff it is an integer.			
2-4 C	Quadratic Ring $\mathbb{Q}[\sqrt{d}]$ is a quad The algebraic int • If $d \equiv 2,3($ • If $d \equiv 1(m)$ they have The algebraic int Complex guadratic	ratic number field when egers in $\mathbb{Q}[\delta], \delta = \sqrt{d}$, d (mod 4) then a and b are nod 4) then <i>a</i> and b are b the form $a + b\eta, \eta = \frac{1}{2}(1)$ egers in $\mathbb{Q}[\sqrt{d}]$ form the tic rings can be represent	a <i>d</i> ∈ \mathbb{Z} is not a square. squarefree, have the form integers. oth integers or half-integers $(a + \sqrt{d})$; <i>a</i> , <i>b</i> ∈ \mathbb{Z} . ring of integers R in the fiel	$\alpha = a + b\delta$, where s $(n + \frac{1}{2})$. In other words, ld, $\mathbb{Z}[\delta]$ or $\mathbb{Z}[\eta]$.
T If	Complex quadra The norm is defir • The norm • Hence $x y$ • An element f $d = -3, -2, -1$ values of d where d -3	tic rings can be represent ned by $N(z) = \overline{z}z$. is a multiplicative function $y \Rightarrow N(x) N(y), x y \Leftrightarrow N(y)$ int is an unit iff its norm is $\lambda = \lambda$, λ , λ , λ then R is an Euclid e R is a complex UFD and Units $1 = \sqrt{3}$	on, and $N(z) = N(\bar{z})$. $(x) y\bar{x}$. 1. lean domain, and hence a lean domain, and hence a	UFD. The only other I -163.
	-2		No	

	-1	<u>±1, ±i</u>	No	
	2	Infinitely many	No	
	3	Infinitely many	No	
	5	Infinitely many	Yes	
	All primes in R have no	orm p or p^2 . If the integration	per prime p is odd and	
• d is a perfect square modulo p, then p is the product of 2 conjugate p			iugate primes of norm p.	
	 <i>d</i> is not a perfect square modulo p, then p is prime in R. Some Theorems Chinese Remainder: Given pairwise coprime b_i and any a_i, there exists a ur 			
	number $x \in R$ modulo $\prod b_i$ such that $x_i \equiv a_i \pmod{b_i}$.			
	 2. R/πR has N(π) elements. It is a field iff π is prime. (Pf. If N(π)=p then 1,p are distinct residues. If N(π) = p² then π = p; take a + bi, 1 ≤ a, b ≤ p. Use inductio the number of prime factors of π.) 3. Fermat's Little Theorem: a^{N(π)} ≡ a(mod π). 4. Euler's Theorem: a^{φ(π)} = 1(mod π). 			
	E Totiontu $m(\Pi^m)$	a_i $M(-) \prod M(\pi_i)^{-1}$	-1	
	5. Touent: $\varphi(\prod_{i=1}^{n})$	$\pi_i^{*} = N(\pi) \prod_{i=1}^{n} \frac{1}{N(\pi_i)}$	<u>,)</u> .	
	Wilson's Theore	em: If π is prime, the pr	oduct of all nonzero res	sidues modulo π is
	congruent to -1	modulo π.		
	7. There are finitel	y many pairwise non-a	associated numbers with	n given norm.
2-5	Gaussian Integers			
	$\mathbb{Z}[i]$ is the ring of Gaus	sian integers.		
	1. If π is a Gauss p	prime, then $\pi \bar{\pi}$ is an int	teger prime or the squa	re of an integer prime.
	2. Each integer pri	me p is a Gauss prime	e or the product $\pi \bar{\pi}$ whe	re π is a Gauss prime.
	3. Primes congrue	nt to 3 modulo 4 are G	auss primes. (They are	e not the sum of two
	squares.)			
	4. Primes congrue	nt to 1 modulo 4, and 2	2, are the product of co	mplex conjugate Gauss
	primes.			
	<u>P1.</u> (3-4) n io o Couco primo iff ((m) is a maximal ideal i	$m \pi[i] iff \bar{D} = \pi[i]/(m)$	$-\mathbb{E}\left[w\right]/(w^2+1)$ is a
	p is a Gauss prime in (p) is a maximal ideal i	$\prod_{i=1}^{n} \mathbb{Z}[i], \prod_{i=1}^{n} \mathbb{K} = \mathbb{Z}[i]/(p) =$	$= \mathbb{F}_p[x]/(x^2 + 1) \text{ is a}$
	field, iff $x^2 + 1$ is irredu	cible (doesn't have a z	zero) in $\mathbb{F}_p[x]$ 1 is a so	puare modulo p iff $p = 2$
	or $p \equiv 1 \pmod{4}$.			
2-6	Factoring Ideals			
	If A and B are ideals, the	hen $AB = \{\sum_i a_i b_i \mid a_i \in$	$\{A, b_i \in B\}$. <i>R</i> is the unit	ideal since $AR = A$ for
	any R.			
	Let R be a comp	plex quadratic ring. The	en $AA = (n) = nR$ for so	ome n; i.e. the product
	is a principal ide	al. (Pf. Let $(a, b), (\overline{a}, b)$) be lattice bases for A,	B. Let
	$n = \gcd(\bar{a}a, bb, b)$	$ba + \overline{a}b$; then $(n) \subseteq A$	A. Show n divides the f	our generators
	$\overline{a}a, \overline{b}b, \overline{b}a, \overline{a}b, b$	y showing $\frac{ba}{d}$, $\frac{\bar{a}b}{d}$ are alg	gebraic integers, so $\bar{A}A$	\subseteq (<i>n</i>).)
	Cancellation La	w: Let A, B, C be nonz	tero ideals. $AB = AC$ iff	$B = C. AB \subset AC \Leftrightarrow B \subset$
	С.			
	• $A B \Leftrightarrow A \supset B$.	lote that if A divides B,	then A is "larger" than	B- it contains more
	elements; upon	multiplication, many o	f the elements disappea	ar.
	A prime ideal P satisfies any of the following equivalent conditions:			

	1. R/P is an integral domain.					
	2. $P \neq R$, and $ab \in P \Rightarrow a \in P$ or $b \in P$.					
	3. $P \neq R$, and if A, B are ideals of R, $AB \subseteq P \Rightarrow A \subseteq P$ or $B \subseteq P$.					
	Any maximal ideal is prime. If P is prime and not zero, and $P AB$, then $P A$ or $P B$. Letting R					
	be a complex quadratic ring, and B be a nonzero ideal,					
	1. B has finite index in R.					
	2. Finitely many ideals in R contain B. (Pf. Look at lattice)					
	3. B is in a maximal ideal.					
	4. B is prime iff it is maximal. (Pf. R/P is a field.)					
	Every proper ideal of a complex quadratic ring R factors uniquely into a product of					
	prime ideals (up to ordering). ¹					
	(Pf. Use 2 and cancellation law.)					
	Warning: Most rings do not have unique ideal factorization since $P \supseteq B \Rightarrow P B$.					
	The complex quadratic ring R is a UFD iff it is a PID. (Pf. If P is prime, P contains a prime					
	divisor π of some element in P. Then $P = (\pi)$.)					
	Below, P is nonzero and prime, p is an integer prime, and π is a Gauss prime.					
	1. If $\overline{P}P = (n)$ then $n = p$ or p^2 for some p.					
	2. (p) is a prime ideal (p "remains prime"), or $p = \overline{P}P$ (p splits; if $\overline{P} = P$ then p ramifies).					
	3. If $d \equiv 2.3 \pmod{4}$, then p generates a prime ideal iff d is not a square modulo p, iff					
	$x^2 - d$ is irreducible in $\mathbb{F}_n[x]$. [Pf. by diagram]					
	4. If $d = 1 \pmod{4}$ then p generates a prime ideal iff $x^2 - x + \frac{1-d}{1-d}$ is irreducible in $\mathbb{F}[x]$					
	For poppare ideals $A = C$, $B = C$, $[B, C] = [AB, AC]$ (Show for prime ideal A)					
	Random: For nonzero ideals A, B, C, $B \supset C \Rightarrow [B:C] = [AB:AC]$. (Snow for prime ideal A,					
	spin into 2 cases based on (2).)					
2-7	Ideal Classes					
	Ideals A and B are similar if $B = \lambda A$ for some $\lambda \in \mathbb{C}$. (The lattices are similar and oriented					
	the same.) Similarity classes of ideals are ideal classes ; the ideal class of A is denoted by					
	$\langle A \rangle$.					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals.					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} =$					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails.					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal:					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \overline{A}A$. Multiplicative function.					
	 The class of the unit ideal ⟨R⟩ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with ⟨A⟩⟨B⟩ = ⟨AB⟩. (Note ⟨A⟩⁻¹ = ⟨Ā⟩.) The class number C tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: Norm: N(A) = n, where (n) = ĀA. Multiplicative function. Index [R: A] of A in R. 					
	 The class of the unit ideal ⟨R⟩ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with ⟨A⟩⟨B⟩ = ⟨AB⟩. (Note ⟨A⟩⁻¹ = ⟨Ā⟩.) The class number C tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: Norm: N(A) = n, where (n) = ĀA. Multiplicative function. Index [R: A] of A in R. Δ(A), the area of the parallelogram spanned by a lattice basis. 					
	 The class of the unit ideal ⟨R⟩ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with ⟨A⟩⟨B⟩ = ⟨AB⟩. (Note ⟨A⟩⁻¹ = ⟨Ā⟩.) The class number C tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: Norm: N(A) = n, where (n) = ĀA. Multiplicative function. Index [R: A] of A in R. Δ(A), the area of the parallelogram spanned by a lattice basis. Minimal norm of nonzero elements of A. 					
	 The class of the unit ideal ⟨R⟩ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with ⟨A⟩⟨B⟩ = ⟨AB⟩. (Note ⟨A⟩⁻¹ = ⟨Ā⟩.) The class number C tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: Norm: N(A) = n, where (n) = ĀA. Multiplicative function. Index [R: A] of A in R. Δ(A), the area of the parallelogram spanned by a lattice basis. Minimal norm of nonzero elements of A. 					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \overline{A}A$. Multiplicative function. • Index $[R:A]$ of A in R. • $\Delta(A)$, the area of the parallelogram spanned by a lattice basis. • Minimal norm of nonzero elements of A. Relationships: • $N(A) = [R:A] = \frac{\Delta(A)}{2}$					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \overline{A}A$. Multiplicative function. • Index $[R:A]$ of A in R. • $\Delta(A)$, the area of the parallelogram spanned by a lattice basis. • Minimal norm of nonzero elements of A. Relationships: • $N(A) = [R:A] = \frac{\Delta(A)}{\Delta(R)}$					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \overline{A}A$. Multiplicative function. • Index $[R:A]$ of A in R. • $\Delta(A)$, the area of the parallelogram spanned by a lattice basis. • Minimal norm of nonzero elements of A. Relationships: • $N(A) = [R:A] = \frac{\Delta(A)}{\Delta(R)}$ $\left(2 \int \frac{ d }{\Delta(R)}, \text{ if } d \equiv 2.3 \pmod{4}\right)$					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \overline{A}A$. Multiplicative function. • Index $[R:A]$ of A in R. • $\Delta(A)$, the area of the parallelogram spanned by a lattice basis. • Minimal norm of nonzero elements of A. Relationships: • $N(A) = [R:A] = \frac{\Delta(A)}{\Delta(R)}$ • If $a \in A$ has minimal nonzero norm. $N(a) \leq N(A)u$, $u = \begin{cases} 2\sqrt{\frac{ a }{3}}, \text{ if } d \equiv 2,3 \pmod{4} \\ - \sqrt{2} \sqrt{\frac{ a }{3}}, \text{ if } d \equiv 2,3 \pmod{4} \end{cases}$. (Pf.					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \bar{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \bar{A}A$. Multiplicative function. • Index $[R:A]$ of A in R. • $\Delta(A)$, the area of the parallelogram spanned by a lattice basis. • Minimal norm of nonzero elements of A. Relationships: • $N(A) = [R:A] = \frac{\Delta(A)}{\Delta(R)}$ • If $a \in A$ has minimal nonzero norm, $N(a) \leq N(A)\mu$, $\mu = \begin{cases} 2\sqrt{\frac{ d }{3}}, \text{ if } d \equiv 2,3 \pmod{4} \\ \sqrt{\frac{ d }{3}}, \text{ if } d \equiv 1 \pmod{4} \end{cases}$. (Pf.					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \bar{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \bar{A}A$. Multiplicative function. • Index $[R:A]$ of A in R. • $\Delta(A)$, the area of the parallelogram spanned by a lattice basis. • Minimal norm of nonzero elements of A. Relationships: • $N(A) = [R:A] = \frac{\Delta(A)}{\Delta(R)}$ • If $a \in A$ has minimal nonzero norm, $N(a) \leq N(A)\mu$, $\mu = \begin{cases} 2\sqrt{\frac{ a }{3}}, \text{ if } d \equiv 2,3 \pmod{4} \\ \sqrt{\frac{ a }{3}}, \text{ if } d \equiv 1 \pmod{4} \end{cases}$. (Pf.					
	The class of the unit ideal $\langle R \rangle$ consists of the principal ideals. The ideal classes form the (abelian) class group C of R, with $\langle A \rangle \langle B \rangle = \langle AB \rangle$. (Note $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.) The class number $ C $ tells how "badly" unique factorization of elements fails. Measuring the size of an ideal: • Norm: $N(A) = n$, where $(n) = \overline{A}A$. Multiplicative function. • Index $[R:A]$ of A in R. • $\Delta(A)$, the area of the parallelogram spanned by a lattice basis. • Minimal norm of nonzero elements of A. Relationships: • $N(A) = [R:A] = \frac{\Delta(A)}{\Delta(R)}$ • If $a \in A$ has minimal nonzero norm, $N(a) \leq N(A)\mu$, $\mu = \begin{cases} 2\sqrt{\frac{ d }{3}}, \text{ if } d \equiv 2,3 \pmod{4} \\ \sqrt{\frac{ d }{3}}, \text{ if } d \equiv 1 \pmod{4} \end{cases}$. (Pf. $\sqrt{\frac{ d }{3}}, \text{ if } d \equiv 1 \pmod{4}$)					

¹ A **Dedekind domain** is a Noetherian, integrally closed integral domain with every nonzero prime ideal maximal (such as the complex quadratic rings). "Integrally closed" means that the ring contains all algebraic integers that are in its ring of fractions. Prime factorization of ideals holds in any Dedekind domain. See Algebraic Number Theory.

	 element with minimal norm, (a) = AC for some C, N(C) ≤ µ, ⟨C⟩ = ⟨Ā⟩,⟨A⟩ = ⟨C̄⟩.) 2. The class group C is generated by ⟨P⟩, for prime ideals P with prime norm p ≤ µ. (Pf. Factor. Either N(P) = p or P = (p).) 3. The class group is finite. (Pf. There are at most 2 prime ideals with norms a given integer since AĀ = (p) has unique factorization; use multiplicativity of norm.) Computing the Class Group of R = Z[√d]. 1. List the primes p ≤ [µ]. 2. For each p, determine whether p splits in R by checking whether x² - d (d = 2,3mod4, x2-x+1-d4 d=1mod4 are reducible.
	 3. If p = ĀA splits in R, include ⟨A⟩ in the list of generators. 4. Compute the norm of some small elements (with prime divisors in the list found above), like k + δ. k ∈ Z. Factor N(a) to factor (a)(ā) = (N(a)); match factors using unique factorization. Note ⟨(a)⟩ = ⟨(ā)⟩ = ⟨R⟩ = 1. As long as a is not divisible by one of the prime factors of N(a), this amounts to replacing each prime in the factorization of N(a) by one of its corresponding ideals in (3) and setting equal to 1. Repeat until there are enough relations to determine the group. [This works since if ∏_i⟨P_i⟩^{a_i} = 1, N(P_i) = p_i then there is an element a, N(a) = ∏_i p_i^{a_i}.] 5. For the prime 2
	a. If $d \equiv 2,3 \pmod{4}$, 2 ramifies: (2) = $P\overline{P}$. <i>P</i> has order 2 for $d \neq -1, -2$. b. If $d \equiv 2 \pmod{4}$, $P = (2, \delta)$. c. If $d \equiv 3 \pmod{4}$, $P = (2, 1 + \delta)$.
2-8	Real Quadratic Rings
	Represent $\mathbb{Z}[\sqrt{d}]$ as a lattice in the plane by associating $\alpha = a + b\sqrt{d}$ with $(u, v) = (a + b\sqrt{d}, a - b\sqrt{d})$. (The coordinates represent the two ways that $F[\delta]$ can be embedded in the real numbers, where δ is the abstract square root of d: $\delta^2 = d$.) The norm is $N(a) = a^2 - b^2 d$ (sometimes the absolute value is used).
	The units satisfy $N(a) = 1$; they lie on the hyperbola $uv = \pm 1$. The units form an infinite group in R. 2 proofs:
	2. Let Δ be the determinant for the lattice of $\mathbb{Z}[\sqrt{d}]$ and $D_s = \{(u, v) \frac{u^2}{s^2} + s^2v^2 \le \frac{2}{\sqrt{3}}\Delta\}$. For
	any lattice with determinant Δ , D_1 contains a nonzero lattice point (take the point nearest the origin and use geometry). $\varphi(x, y) = (sx, \frac{y}{s})$ is an area-preserving map; by applying φ
	to the lattice, we get that every D_s has a nonzero lattice point. These points have bounded norm; one norm is hit an infinite number of times. The ratios of these quadratic integers are units.

3	Polynomials
3-1	Polynomials
	A polynomial with coefficients in R is a finite combination of nonnegative powers of the variable x. The polynomial ring over R is
	$R[X] = \left\{ \sum_{i=0}^{n} a_i x^n \mid a_i \in R \right\}$
	with X a formal variable and addition and multiplication defined by: $(f(x) = \sum_{i} a_{i}x^{i}, g(x) = \sum_{i} b_{i}x^{i})$
	1. $f(x) + g(x) = \sum_{i} (a_{i} + b_{i})x^{i}$ 2. $f(x)g(x) = \sum_{i} a_{i}b_{j}x^{i+j}$ R is a subring of R[X] when identified with the constant polynomials in R. The ring of formal series $R[[X]]$ is defined similarly but combinations need not be finite. Iterating, the ring of polynomials with variables $x_{1}, x_{2},, x_{n}$ is $R[x_{1}, x_{2},, x_{n}]$. (Formally, use the substitution principle below to show we can identify $R[x][y]$ with $R[x, y]$.)
	Basic vocab: monomial, degree, constant, leading coefficient, monic
	Division with Remainder: Let $f, g \in R[X]$ with the leading coefficient of f a unit. There are unique polynomials $q, r \in R[X]$ (the quotient and remainder) so that $g(x) = f(x)q(x) + r(x)$, deg $r < \text{deg } f$
	Substitution Principle: Let $\varphi: R \to R'$ be a ring homomorphism. Given $a_1,, a_n \in R'$, there is a unique homomorphism $\Phi: R[x_1,, x_n] \to R'$ which agrees with the map φ on constant polynomials, and sends $x_i \to a_i$. For $R = R'$, this map is just substituting a_i for the variable x_i and evaluating the polynomial.
	A characterization of the GCD: The greatest common divisor d of $f, g \in R = F[x]$ is the monic polynomial defined by any of the following equivalent conditions: 1. $Rd = Rf + Rg$ 2. Of all polynomials dividing f and g, d has the greatest degree.
	3. If $e f, g$ then $e d$. From (1), there exist $p, q \in R$ so $d = pf + qg$.
	Adjoining Elements Suppose α is an element satisfying no relation other than that implied by $f(\alpha) = 0$ where $f \in R[x]$ and has degree n. Then $R[\alpha] \cong R[x]/(f)$ is the ring extension. If f is monic, its distinct elements are the polynomials in α (with coefficients in R) of degree less than n, with $(1, \alpha,, \alpha^{n-1})$ a basis. A polynomial in α is equivalent to its remainder upon division by f. R can be identified with a subring of $R[\alpha]$ as long as no constant polynomial is identified with 0.
3-2	$\mathbb{Z}[X]$
	Tools for factoring in $\mathbb{Z}[X]$: 1. Inclusion in $\mathbb{Q}[X]$. 2. Reduction modulo prime p: $\psi_p: \mathbb{Z}[X] \to \mathbb{F}_p[X]$.

	A polynomial in $\mathbb{Z}[X]$ is primitive if the greatest common divisor of its coefficients is 1, it is not constant, and the leading coefficient is positive.
	<u>Gauss's lemma</u> : The product of primitive polynomials is primitive. Pf. Any prime p in \mathbb{Z} is prime in $\mathbb{Z}[x]$, and a prime divides a polynomial iff it divides every coefficient.
	 Every nonconstant polynomial f(x) ∈ Q[x] can be written uniquely as f(x) = cf₀(x), c ∈ Q and f₀(x) primitive. If f₀ is primitive and f₀ g ∈ Z[x] in Q[x], then f₀ g in Z[x]. If two polynomials have a common nonconstant factor in Q[x], they have a common nonconstant factor in Z[x]. An element of Z[x] is irreducible iff it is a prime integer or a primitive irreducible polynomial in Q[x], so every irreducible element of Z[x] is prime. Hence Z[x] is a UFD, and each nonzero polynomial can be written uniquely (up to ordering) as (p_i primes, q_i primitive irreducible polynomials) f(x) = ±p₁ … p_mq₁(x) … q_n(x) This technique can be generalized: replace Z with a UFD R, and Q with the field of fractions of R. By induction, if R is a UFD, then R[x₁,, x_n] is a UFD.
3-3	Irreducible Polynomials
	The derivative of a polynomial is formally defined (without calculus) as $\left(\sum_{i=0}^{n} a_i x^i\right)' = \sum_{i=1}^{n} i a_i x^{i-1}.$ • α is a multiple root of $f(x) \in F[x]$ iff α is a root of both $f(x)$ and $f'(x)$. α appears as a root exactly n times if $f^{(i)}(\alpha) = 0$ for $0 \le i < n$ but $f^{(n)}(\alpha) \ne 0$. • f, f' have a common factor other than 1 iff there is a field extension where f has a multiple root. • If f is irreducible, and $f' \ne 0$, then f has no multiple root (in any field extension). If F has characteristic 0, then f has no multiple root (in any field extension). If $f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x], p \nmid a_n$, and the residue of f modulo p is irreducible in $\mathbb{F}_p[x]$, then f is irreducible in $\mathbb{Q}[x]$. Irreducible polynomials in $\mathbb{F}_p[x]$ can be found using the sieve method.
	Eisenstein Criterion: If $f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x], p \nmid a_n, p \mid a_{n-1}, \dots, a_0, p^2 \nmid a_0$, then f is irreducible in $\mathbb{Q}[x]$. Pf. Factor and take it modulo p; get $\overline{f} = (b_r x^r)(c_s x^s)$. But if $r, s \neq 0, p^2 \mid a_0$. Extended Eisenstein's Criterion
	Schönemann's Criterion: Suppose • $k = f^n + pg, n \ge 1, p$ prime, $f, g \in \mathbb{Z}[x]$ • $\deg(f^n) \ge \deg(f^n)$

	k primitive
	• \overline{f} is irreducible in $\mathbb{F}_p[x]$
	• $\bar{f} \nmid \bar{g}$.
	Then k is irreducible in $\mathbb{Q}[x]$.
	<u>Cohn's Criterion</u> : Let $b \ge 2$ and let p be a prime number. Write $p = a_n b^n + \dots + a_1 b + a_0$ in base b. Then $f(X) = a_n X^n + \dots + a_1 X + a_0$ is irreducible in $\mathbb{Q}[X]$.
	<u>Capelli's Theorem</u> : Let K be a subfield of \mathbb{C} and $f, g \in K[X]$. Let a be a complex root of f and assume that f is irreducible in $K[X]$ and $g(X) - a$ is irreducible in $K[a][X]$. Then $f(g(X))$ is irreducible in $K[X]$.
	[Add proof sketches.]
3-4	Cyclotomic Polynomials
	A primitive nth root of unity satisfies $\omega^n = 1$, but $\omega^m \neq 1$ for $n \in \mathbb{N}$, $0 < m < n$. The nth cyclotomic polynomial is
	$\Phi_n(X) = (X - \omega).$
	ω primitive nth root The cyclotomic polynomial is an irreducible polynomial in $\mathbb{Z}[X]$ of degree $\varphi(n)$. Each polynomial $X^n - 1$ is a product of cyclotomic polynomials:
	$X^{n} = \prod_{d n} \Phi_{d}(X) \Rightarrow \Phi_{n}(X) = \frac{X^{n} - 1}{\prod_{d n,d < n} \Phi_{d}(X)}$
	so $\Phi_n(X)$ has integer coefficients. <u>Pf. of irreducibility</u> : Lemma- if ω is a primitive nth root of unity and a zero of $f \in \mathbb{Z}[X]$ then ω^p is a root for $p \nmid n$. Proof- Suppose $\Phi_n = gh, h(\omega) = 0$, h irreducible (the minimal polynomial of ω). ω^p is also a zero of Φ_n . Suppose it is a zero of g . Then ω is a zero of $g(x^p)$, so $g(x^p) = hk$. Mod p, $g(x)^p = hk$, so g and h have a root in cogmmon, contradicting that $X^n - 1 \in \mathbb{Z}_p[X]$ has no multiple root (derivative has no common factors with $X^n - 1$). Hence ω^p is a zero of h. \blacksquare Take powers to different primes to show that all primitive nth roots of unity divide h. Then $h = \Phi_n$ is irreducible.
3-5	Varieties
	 The set Aⁿ of n-tuples in a field K is the affine n-space. If S is a set of polynomials in K[X₁,,X_n] then V(S) = {x ∈ Aⁿ f(x) = 0 for all f ∈ S} is a (affine) variety. For X ⊆ Aⁿ, define the ideal of X to be I(X) = {f ∈ K[X₁,,X_n] f vanishes on X} Note S ⊆ K[X₁,,X_n], X ⊆ Aⁿ, V(S) ⊆ Aⁿ, I(X) ⊆ K[X₁,,X_n]. The radical of the ideal I in a ring T is the ideal √I = {f ∈ R f^r ∈ I for some r ∈ N}
	A^n can be made into a topology (the Zariski topology) by taking varieties as closed sets (1-4 below).

	Properties: 1. $V(S) = V(I)$ where I is the ideal generated by S.
	2. $\cap V(I_j) = V(\cup I_j)$
	3. If $V_j = V(l_j)$ then $\bigcup_{j=1}^{j} V_j = V(\{f_1 \cdots f_r f_j \in l_j, 1 \le j \le r\}).$ 4. $A^n = V(0) \ \phi = V(1)$
	5. $X \subseteq Y \Rightarrow I(Y) \subseteq I(X), S \subseteq T \Rightarrow V(T) \subseteq V(S)$
	6. $S \subseteq IV(S), X \subseteq VI(X)$ 7. $VIV(S) = V(S), WI(X) = I(X)$
	8. $I(0) = K[X_1,, X_n]$
	9. If K is an infinite field, $I(A^n) = \{0\}$.
	induction.
	10. $I(\{(a_1,, a_n)\}) = (X_1 - a_1,, X_n - a_n)$ (the ideal generated by $X_i - a_i$)
	11. If $(a_1, \dots, a_n) \in A^n$ then $I = (X_1 - a_1, \dots, X_n - a_n)$ is a maximal ideal.
	a. Apply the division algorithm to $f \in J \setminus I$.
	$12.\sqrt{I} \subseteq IV(I)$
3-6	Nullstellensatz
	Hilbert Basis Theorem: If R is Noetherian, then $R[x]$ is Noetherian. Thus so is $R[x_1,, x_n]$.
	In particular, this holds for $R = \mathbb{Z}$ or a field F. If For $L \subseteq P[x]$ an ideal, the set whose elements are the leading coefficients of the
	polynomials in I (including 0) forms the <i>ideal of leading coefficients</i> in R. Take generators for
	this ideal and polynomials with those leading coefficients, multiplying by x as necessary so
	Noetherian R-module P with basis $(1, x,, x^{n-1})$. $P \cap I$ has a finite generating set. Put the
	two generating sets together. The ring of formal power series $P[[Y]]$ is also Neetherian
	<u>Noether Normalization Lemma:</u> Let A be a finitely generated K-algebra. There exists a subset $\{y_1, \dots, y_n\}$ of A such that the y _n are algebraically independent over K and A is integral.
	over $K[y_1,, y_r]$ (all elements of A are algebraic integers over $K[y_1,, y_r]$).
	<u><i>Pf.</i></u> Induct on n; n=1 trivial. Take a maximally algebraically independent subset $\{x_1,, x_r\} \subseteq [x_1,, x_r]$ is a sume $n > r$. By algebraic dependency, there exists $f \in K[X_1,, X_r]$ is that
	$f(x_1,, x_n) = 0$. Lexicographically order the monomials, and choose weights w_i to match
	the lexicographic order. Set $x_i = z_i + x_n^{w_i}$. Then we get a polynomial in x_n , where term with
	the highest power of x_n is uncancelled. x_n is integral over $K[z_1,, z_{n-1}]$; finish by induction. Cor. If B is a finitely generated K-algebra, and I is a maximal ideal, then B/I is a finite
	extension of K (K is embedded via $c \rightsquigarrow c + I$.): In the above, we must have $r = 0$; B/I is
	algebraic over K.
	Hilbert's Nullstellensatz: For any field K and $n \in \mathbb{N}$, the following are equivalent:
	2. (Maximal Ideal Theorem) The maximal ideals of $K[X_1,, X_n]$ are the ideals of the
	form $(X_1 - a_1, \dots, X_n - a_n)$.
	4. (Strong Nullstellensatz) If I is an ideal of $K[X_1,, X_n]$ then $IV(I) = \sqrt{I}$.
	(2) \Rightarrow (3): For I a proper ideal, let J be a maximal ideal containing it. Then $V(J) \subseteq V(I)$ so
	$J = (X_1 - a_1, \dots, X_n - a_n), a \in V(J).$

 $(3) \Rightarrow (4)$: Rabinowitsch Trick:

- 1. Let $f \in IV(I)$. Let $f_1, ..., f_m$ be a generating set for $K[X_1, ..., X_n, Y]$. Let I^* be the ideal generated by $f_1, \ldots, f_m, 1 - Yf$.
- 2. $V(I^*) = \phi$
 - a. If $(a_1, ..., a_n, a_{n+1}) \in A^{n+1}$ and $(a_1, ..., a_n) \in V(I)$, then $(a_1, ..., a_n, a_{n+1}) \notin V(I^*)$ since it is not a zero of 1 - Yf.
 - b. If $(a_1, ..., a_n) \notin V(I)$ then $(a_1, ..., a_n, a_{n+1}) \notin V(I^*)$ (an even weaker statement).
- 3. Using the weak Nullstellensatz (see below), we can write

$$1 = \sum_{i=1}^{m} g_i f_i + h(1 - Yf)$$

since $V(I^*) = \phi \Rightarrow 1 \in I^* = K[X_1, \dots, X_n, Y].$

4. Set Y = 1/f, and multiply to clear denominators

$$f^r = \sum_{i=1}^m h_i(X_1, ..., X_n) f_i(X_1, ..., X_n) \in I$$

 $(4) \Rightarrow (3)$: The radical of an ideal is the intersection of all prime ideals containing I. I is in a maximal, prime ideal P; so is \sqrt{I} , so \sqrt{I} is proper. IV(I) is proper by (4), so $V(I) \neq \phi$. (3) \Rightarrow (2): For I maximal, there is $a \in V(I)$. Since I is maximal, it must be in $(X_1 - a_1, \dots, x_n - a_n)$ a_n).

(1) \Rightarrow (2): Let I be a maximal ideal. K can be imbedded via $c \rightsquigarrow c + I$ in $K[X_1, ..., X_n]/I$; by the corollary to Noether Normalization Lemma, this is a finite extension of K so must be K (since it is algebraically closed). Then $X_i + I = a_i + I \Rightarrow X_i - a_i \in I$, $(X_1 - a_1, \dots, X_n - a_n) \subseteq I$, with equality since the LHS is maximal.

 $(2) \Rightarrow (1)$: If f is a nonconstant polynomial in $K[X_1]$ with no root in K, regard it as a polynomial in $K[X_1, ..., X_n]$ with no root in A^n . Then I is in a maximal ideal $(X_1 - a_1, ..., X_n - a_n)$, so has root $X_1 = a_1$.

<u>Combinatorial Nullstellensatz</u>: Let F be a field, $f \in F[X_1, ..., X_n]$ and let $S_1, ..., S_n$ be nonempty subsets of F.

1. If $f(s_1, \dots, s_n) = 0$ for all $(s_1, \dots, s_n) \in S_1 \times \dots \times S_n$ (i.e. $f \in V(S_1 \times \dots \times S_n)$) then f lies in the ideal generated by the polynomials $g_i(X_i) = \prod_{s \in S_i} (X_i - s)$. The polynomials h_1, \ldots, h_n satisfying

 $f = g_1 h_1 + \dots + g_n h_n$

can be chosen so that $\deg(h_i) \leq \deg(f) - \deg(g_i)$ for all i. If $g_1, \dots, g_n \in R[X_1, \dots, X_n]$ for some subring $R \subseteq F$, we can choose $h_i \in R[X_1, ..., X_n]$.

- a. The $s \in S_i$ are all zeros of g_i of degree $|S_i|$ so by subtracting multiples of g_i every X_i^k in f can be replaced with a linear combination of 1, ..., $x_i^{|S_i|-1}$. Then by counting zeros the result is actually 0; i.e. f is in the form above.
- 2. If $\deg(f) = t_1 + \dots + t_n$ where t_i are nonnegative integers with $t_i < |S_i|$, and if the coefficient of $X_1^{t_1} \cdots X_n^{t_n}$ is not 0, then there exist $s_i \in S_i$ so that $f(s_1, \dots, s_n) \neq 0$, i.e. $f \notin f \in V(S_1 \times \cdots \times S_n).$

4	Fields
	 Examples of Fields An extension K of a field F (also denoted <i>K/F</i>) is a field containing F. Number field: subfield of C Finite field: finitely many elements Function field: Extensions of C(<i>t</i>) of rational functions
4-1	Fundamental Theorem of Algebra
	<u>Fundamental Theorem of Algebra:</u> Every nonconstant polynomial with complex coefficients has a complex zero. Thus, the field of complex numbers is algebraically closed, and every polynomial in $\mathbb{C}[x]$ splits completely. Pf. Let $f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0$. Let $x = re^{\theta i}$ - the parameterization of a circle about the origin. $ f(x) - x^n $ is small for large r, so for large r, $f(x)$ winds around the origin n times as θ goes from 0 to $2\pi n$. ² (f is a person walking a dog on a circular path n times around the origin. The dog will also walk around the origin n times provided the leash is shorter than the radius.) For small r, $f(x)$ makes a small loop around a_0 , and winds around the origin 0 times. For some intermediate value, $f(x)$ will pass through the origin.
4-2	Algebraic Elements
	 Let K be an extension, and α be an element of K. α is algebraic over F if it is the zero of a polynomial in F[x], and transcendental otherwise. α is transcendental iff the substitution homomorphism φ: F[x] → K is injective. F(α) is the smallest subfield of K that contains F and α. The irreducible polynomial f of α over F is the monic polynomial of lowest degree in F[x] having α as a zero. Any polynomial in F[x] having α as a zero divides f. F[x]/(f) is an extension field of F with x a root of f(x) = 0. The substitution map F[x]/(f) → F[α] is an isomorphism, so F[x]/(f) ≅ F(α). [*] For every polynomial in F[x], there is an extension field in which it splits (factors) completely, i.e. every polynomial has a splitting field. If f has degree n then F(α) is a vector space with dimension n and basis (1, α,, αⁿ⁻¹). Let α, β be elements of K/F, L/F algebraic over F. There is an isomorphism of fields F(α) → F(β) sending α → β iff α, β have the same irreducible polynomial. Let K, L be extensions of F. A F-isomorphism is an isomorphism φ: K → L that restricts to the identity on F. Then K and L are isomorphic as field extensions.
4-3	Degree of a Field Extension
	 The degree [K: F] is the dimension of K as an F-vector space. If α is algebraic over F, then [F(α): F] is the degree of the irreducible polynomial of α over F, and if α is transcendental, [F(α): F] = ∞. [K: F] = 1 iff F = K.

² i.e. it is homotopic to the loop going around the origin n times in $\mathbb{C} - \{0\}$.

	• If $[K:F] = 2$ then K can be obtained by adjoining a square root δ of an element in F:
	• Multiplicative property: If $F \subseteq K \subseteq L$, then $[L; F] = [L; K][K; F]$.
	• If K is a finite extension of F, and $\alpha \in K$, then the degree of α divides [K:F].
	• If $\alpha \in L$ is algebraic over F, it is algebraic over K with degree less than or
	equal to its degree over F.
	 A field extension generated by finitely many algebraic elements is a finite
	extension.
	• The set of elements of K that are algebraic over F is a subfield of K.
	• Let L be an extension field of F, and let K, F' be subfields of L that are finite
	extensions of F. Let $[K : F] = N$, $[K : F] = m$, $[F : F] = n$. Then m and h divide N, and $N < mn$
	$N \leq mn$.
	$\leq n / K' \leq m$
	$V = N \leq mn = E'$
	\mathbf{R}
	$m = \frac{1}{F} \sqrt{n}$
	Finding the Irreducible Polynomial of γ
	(The dum way) Compute powers of γ , and find a relation between them.
	1. If $\gamma = a_1 + \dots + a_n a_n \dots a_n$ where each a_1 is algebraic (for example a <i>n</i> th root) then
	its conjugates (other zeros of the irreducible polynomial) are in the form $h_1 + \dots +$
	$b_n, b_1 \cdots b_n$, respectively where b_i is a conjugate of a_i . (Not all these may be
	conjugates.)
	2. The irreducible polynomial is $\prod_{\gamma' \text{ conjugate of } \gamma} (x - \gamma')$. [Note: This gives an elementary
	proof of the fact that the algebraic numbers/ integers form a field/ ring. For a, b
	algebraic, expand the product $(x - a - b)$, a' , b' running over the conjugates of a, b ,
	and use the Fundamental Theorem on Symmetric Polynomials.
4-4	Application: Constructions!
	Dulasi
	Rules:
	2 If P. Q have been constructed, we can draw (construct)
	a. the line through them
	b. a circle with center at P and passing through Q.
	Points of intersection of constructed lines and circles are constructed.
	4. A number is constructible if (a,0) is constructible.
	Finding all constructible numbers:
	1. If $P = (a_0, a_1), Q = (b_0, b_1)$ have coordinates in F, then the line in (2a) is defined by a linear equation with coefficients in E, while the circle in (2b) is defined by a quadratic
	equation with coefficients in F
	2. The point of intersection of two lines/ circles whose equations have coefficients in F
	has coordinates in a real quadratic extension of F.
	3. Let P be a constructible point. There is a chain of fields $\mathbb{Q} = F_0 \subset F_1 \subset \cdots \subset F_n = K$
	such that
	a. K is a subfield of \mathbb{R} .
	b. The coordinates of P are in F_n .
	C. $[F_{i+1}:F_i] = 2$, and $[K:\mathbb{Q}] = 2^n$.

	 Thus a constructible number has degree over Q a power of 2. 4. Conversely, if a chain of fields satisfies the conditions above, then every element of K is constructible.
	Examples: 1. Trisecting the angle with compass and straightedge is impossible. cos 20° is not constructible
	2. For p prime, a regular p-gon can be constructed iff $p = 2^r + 1$.
4-5	Finite Fields
	 A finite field is a vector space over F_p for some prime p, so has order q = p^r. The (unique) field of order q is denoted by F_q. 1. The elements in a field of order q are roots of x^q - x = 0 (everything is modulo p). a. The multiplicative group F^x_q of nonzero elements has order q - 1. The order of any element divides q - 1 so α^{q-1} = 0 for any α ∈ F_q. 2. F^x_q is a cyclic group of order q - 1. a. By the Structure Theorem for Abelian Groups, F^x_q is a direct product of cyclic subgroups of orders d₁ … d_k, and the group has exponent d_k. x^{d_k} - 1 = 0 has at most d_k roots, so k = 1, d_k = q - 1. 3. There exists a unique field of order q (up to isomorphism). a. Existence: Take a field extension where x^q - x splits completely. If α, β are roots of x^q - x = 0 then (α + β)^q = α + β. Since -1 is a root, -α is a root. The roots form a field. b. Uniqueness: Suppose K, K' have order q. Let α be a generator of K[×]; K = F(α). The irreducible polynomial f ∈ K[x] with root α divides x^q - x. x^q - x splits completely in both K, K', so f has a root a' ∈ K'. Then F(α) ≅ F[x]/(f) ≅ F(α') = K'. 4. A field of order p' contains a subfield of order p^k iff k r. (Note this is a relation between the exponents, not the orders.) a. F_p ⊆ F_p → k r: M^t(p^k) = n + 0. Cyclic F[×]_p contains a cyclic group of order p^k. Including 0, they are the roots of x^{p^k} - x = 0 and thus form a field by 3a. 5. The irreducible factors of x^q - x over F_p are the irreducible polynomials g in F[x] whose degrees divide r. a. ⇒: Multiplicative property b. ⇐: Let β be a root of g. If k r, by (4), F_q contains a subfield isomorphic to F(β). g has a root in F_q so divides x^q - x.
	To compute in \mathbb{F}_q , take a root β of the irreducible factor of $x^q - x$ of degree r; $(1, \beta,, \beta^{r-1})$ is a basis.
	Let $W_p(d)$ be the number of irreducible monic polynomials of degree d in \mathbb{F}_p . Then by (2), $p^n = \sum_{ij} dW_p(d).$
	^d In By Möbius inversion,

$$W_p(n) = \frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^d.$$

Primitive elements
Let K be a field extension of F. An element $\alpha \in K$ such that $K = F(\alpha)$ is a **primitive element** for the extension.
Primitive Element Theorem: Every finite extension of a field F contains a primitive element.
Proof when F has characteristic 0: Show that if $K = F(\alpha, \beta)$ with $\alpha, \beta \in K$ then $\gamma = \beta + c\alpha$ is a primitive element for K over F. Let f, g be the irreducible polynomials of α, β , and α_i, b_j be the conjugates of α, β . For all but finitely many c , the numbers $\beta_j + c\alpha_i$ are all distinct. For such a value of c , to show that $\gamma = \beta + c\alpha$ is a primitive element, consider $h(x) = g(\gamma - cx) \in F(\gamma)$. $gcd(f, h) = x - \alpha$ by choice of c, so $\alpha \in F(\gamma)$ as desired.

5	Modules				
	More structure→	No division		Division	
	More complex	Ring		Field	
	↓	Module		Vector S	pace
		Algebra		Division	Algebra
5-1	Modules A left/right R-module M/M_{-} over the ring R is an abelian group (M +) with addition and			oup (M.+) with addition and	
	scalar multiplicati	on $(R \times M \to M)$	or $M \times R \rightarrow M$) def	ined so th	at for all $r, s \in R$ and $x, v \in M$.
			eft		Right
	1. Distributive	r	(x + y) = rx + ry		(x+y)r = xr + yr
	2. Distributive	(1	(x + y) $rx + sxr + s)x = rx + sx$		$\frac{x(r+s) = xr + xs}{x(r+s) = xr + xs}$
	3. Associative	r	$\frac{(sr) = (rs)r}{(sr) = (rs)r}$		$\frac{x(r+s)}{(xr)s} = x(rs)$
	4. Identity	1	x = x		$x_1 = x$
	A (S.R)-bimodule	e cMphas both t	he structure of a le	ft S-modu	lle and right R-modules.
	Modules are gene	eralizations of ve	ector spaces. All re	sults for v	ector spaces hold except ones
	depending on div	ision (existence	of inverse in R). S	$\subseteq M$ is lin	early dependent if there exist
	$v_1, \dots, v_n \in S$ such	that $\dot{r}_i v_i \neq 0$ and	, nd		
			$r_1v_1 + \cdots + r_nv_n$	= 0.	
	Again, a basis is a	a linearly indepe	endent set that gen	erates the	e module. Note that if elements
	are linearly indep	endent, it is not	necessary that one	e element	is a linear combination of the
	others, and bases	s do not always	exist. Every basis f	for V (if it	exists) contains the same
	number of elemei	nts. V is finitely	generated if it cont	tains a fin	ite subset spanning V. The
	rank is the size o	f the smallest ge	enerating set.		
	A submodule of multiplication. Vie submodules correspondence parallelogram/par	a R-module is a wing R as an R espond to lattice allelepiped equa	nonempty subset -module, the subm s, with the area/vo al to the determina	closed un odules of lume of a nt.	nder addition and scalar R are the ideals in R. In \mathbb{Z}^n , fundamental
		ith n generators	has a basis with n	alamants	t is isomorphic to P^n
	An isomorphism r	preserves additi	on and scalar multi	iplication	Unlike vector spaces not all
	finitely generated	modules are iso	omorphic to some	R^n .	
	generated				
	Basic Theorems:				
	1. If W is a su	ubmodule of V, t	the quotient module	e V/W is a	a R-module, and the canonical
	map π: V -	$\rightarrow V/W$ is a home	omorphism.	,	
	2. Mapping P	roperty: Let f: V	$' \rightarrow V'$ be a homom	orphism o	of R-modules with kernel
	containing	W. There is a u	nique homomorphi	ism \overline{f} with	$f = \bar{f} \circ \pi.$
		$f \rightarrow G$			
	3. First Isomo	orphism Theorer	m: If <i>f</i> is surjective	with kern	el W, \overline{f} is an isomorphism.
	4. Correspon	dence Theorem	: Let $f: V \to V'$ be a	a surjectiv	e homomorphism. There is a
	bijective co	orrespondence b	petween submodul	es of V' a	nd submodules of V that
	containing	$\ker \dot{f} = W: S \text{ with } S$	th $W \subseteq S \subseteq V$ is as	sociated	with $f(S)$; $V/S \cong V'/f(S)$.

	5. Second Isomorphism Theorem: Let <i>S</i> and <i>T</i> be submodules of <i>M</i> , and let $S + T = {x + y : x \in S, y \in T}$. Then $S + T$ and $S \cap T$ are submodules of <i>M</i> and
	$\frac{S+T}{S} \simeq \frac{S}{S}$
	6. Third Isomorphism Theorem: Let $N \subseteq L \subseteq M$ be modules. Then $M/L \cong (M/N)/(L/N)$.
5-2	Structure Theorem
	Matrices, invertible matrices, the general linear group, the determinant, and change of bases matrices all generalize to a ring R. However, a R-matrix A is invertible iff its determinant is a <i>unit</i> . Properties of matrices in a field such as $det(AB) = det(A) det(B)$ continue to hold in a ring, because they are polynomial identities
	Thing, because they are polynomial rachines.
	 Smith Normal Form For a matrix over an Euclidean domain R [*] (such as Z or F[t]), elementary row/ column operations correspond to left and right multiplication by elementary matrices and include: (1) Interchanging 2 rows/ columns (2) Multiplying any row/ column by a unit (3) Adding any multiple of a row/ column to another row/ column
	However, note arbitrary division in R is illegal.
	$A m \times n$ matrix is in Smith (or Hermite) normal form if
	1. It is diagonal.
	2. The entries $d_1,, d_n$ on the main diagonal satisfy $d_k d_{k+1}, 1 \le k < \min(m, n)$. (Ones at the end may be 0.)
	Every matrix is equivalent to a unique matrix N in normal form. For a $m \times n$ matrix A, follow this algorithm to find it:
	1. Make the first column $\begin{bmatrix} p \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.
	 a. Choose the nonzero entry <i>f</i> in the first column that has the least norm. b. For each other nonzero entry <i>p</i>, use division to write <i>p</i> = <i>fq</i> + <i>r</i>, where <i>r</i> is the remainder upon division. Subtract <i>q</i> times the row with <i>f</i> from the row with <i>p</i>. c. Repeat a and b until there is (at most) one nonzero entry. Switch the first row with that row if necessary.
	2. Put the first row in the form $[p \ 0 \ \cdots \ 0]$ by following the steps above but exchanging the words "rows" and "columns".
	 Repeat 1 and 2 until the first entry g is the only nonzero entry in its row and column. (This process terminates because the least degree decreases at each step.) If a decay pet divide every entry of A find the first column with an entry pet divisible by
	g and add it to column 1, and repeat 1-4; the degree of "g" will decrease. Else, go to the next step.
	5. Repeat with the $(m-1) \times (n-1)$ matrix obtained by removing the first row and column.
	Solving $AX = B$ in R:
	1. Write $A = QA'P^{-1}$, where A' is in normal form. Suppose the nonzero diagonal entries are $d_1 d_2 = d_1$
	 The solutions X' of the homogeneous system A'X' = 0 are the vectors whose first k coordinates are 0.

	3. The solutions of $AX = 0$ are in the form $X_h = PX'$.
	4. The equation has a solution iff <i>B</i> is in the form $QY', Y' = \begin{bmatrix} \vdots \\ r_k d_k \\ 0 \\ \vdots \end{bmatrix}$. Use linear algebra to
	find a particular solution X_p . (The condition guarantees that the entries are in R.)
	Then the solutions are $X_h + X_p$, for X_h a homogeneous solution.
	Structure Theorem:
	(a.k.a. Fundamental Decomposition Theorem) Let M be a finitely deperated module over the PID R (such as \mathbb{Z} or $F[t]$) Then M is a direct
	sum of cyclic modules and a free module $C_1 \oplus \cdots \oplus C_k \oplus L$, where $C_i \cong R/(d_i)$. The cyclic
	modules can be chosen to satisfy either of the following conditions:
	1. $d_1 d_2 \cdots d_k$
	2. Each a_i is the power of an irreducible element.
5-3	Noetherian and Artinian Rings
	The following conditions on a R-module V are equivalent:
	1. Every submodule is finitely generated.
	2. Ascending chain condition: There is no infinite strictly increasing chain $W_1 \subset W_2 \subset \cdots$
	A ring is Noetherian if every ideal of R is finitely generated. In a Noetherian ring, every
	proper ideal is contained in a maximal ideal.
	Let φ be a homomorphism of R-modules.
	1. If V is finitely generated and φ is surjective, then V' is finitely generated. 2. If kor φ im φ are finitely generated so is V. (Pf. Take a generating set for the kernel
	and some preimage of a generating set for the image.)
	3. In particular, if V is finitely generated, so is V/W . If V/W and W are finitely
	generated, so is V.
	If R is Noetherian, then every submodule of a finitely generated R-module is finitely
	Pf. Using a surjective map $\varphi: \mathbb{R}^m \to V$, it suffices to prove it for \mathbb{R}^m . Induct on m. For the
	projection $\pi: \mathbb{R}^m \to \mathbb{R}^{m-1}$, the image and kernel are finitely generated.
	A ring is Artinian if it satisfies the descending chain condition on ideals: There is no infinite
	strictly decreasing chain $I_1 \supset I_2 \supset \cdots$ of ideals.
5-4	Application 1: Abelian Groups
	An abelian group corresponds to a \mathbb{Z} -module with integer multiplication defined by
	$nv = \underbrace{v + v + \cdots + v}_{v}$. Abelian groups and \mathbb{Z} -modules are equivalent concepts, so
	generalizing linear algebra for modules helps us study abelian groups.
	If W is a free abelian group of rank m, and U is a subgroup, then U is a free abelian group of
	Frank at most m . If Choose a (finite) set of generators $\beta = (\mu_1, \dots, \mu_n)$ for L and a basis $\mu = (\mu_1, \dots, \mu_n)$ for
	W. Write $u_j = \sum_i w_i a_{ij}$. Then left multiplication by A is an surjective homomorphism $\mathbb{Z}^n \rightarrow \mathbb{Z}^n$
	\mathbb{Z}^{m} . Diagonalizing A, we can find an explicit basis for U with at most $n \leq m$ elements.

2. All the d_i are prime power orders. (Uniqueness follows from counting orders in pgroups.)

by the

5-5 **Application 2: Linear Operators**

A linear operator T on a F-vector space corresponds to a F[t]-module with *multiplication by a polynomial defined by* tv = T(v), f(t)v = [f(T)](v). A submodule corresponds to a T-invariant subspace. The structure theorem gives:

Rational Canonical Form: Every linear operator T on finite-dimensional V has a rational canonical form. $[T]_{\beta} = \begin{bmatrix} C_1 & 0 & \cdots & 0 \\ 0 & C_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & C_r \end{bmatrix}$

where each C_i is the companion matrix of an invariant factor p_i . The rational canonical form

	is unique under the condition $p_{i+1} p_i$ for each $1 \le i < r$.
	The companion matrix of the monic polynomial $p(t) = a_0 + a_1t + \dots + a_{k-1}t^{k-1} + t^k$ is
	$\begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \end{bmatrix}$
	$C(p) = \begin{vmatrix} 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_k \end{vmatrix}$ because the characteristic polynomial of C(p) is $(-1)^k p(t)$.
	The product of the invariant factors is the characteristic polynomial of T.
5-6	Polynomial Rings in Several Variables
	Let $R = \mathbb{C}[x_1,, x_k] = \mathbb{C}[X]$ ($X \in \mathbb{C}^k$), and V be a finitely generated R-module with presentation matrix $A(X)$. V is a free module of rank r iff $A(c)$ has rank $m - r$ at every point $c \in \mathbb{C}^k$.
	The subspace $W(c)$ spanned by the columns varies continuously as c if the dimension does not "jump around." Continuous families of vector spaces are vector bundles . V is free iff $W(c)$ forms a vector bundle over \mathbb{C}^n .
5-7	Tensor Products
	Commutative Rings: The tensor product $M \otimes_R N$ of R-modules M and N is the (unique) R-module T (along with a bilinear map $h: M \times N \to T$) satisfying the <u>Universal Mapping Property</u> : for any <i>bilinear map</i> $f: M \times N \to P$, there is a unique R-homomorphism $g: T \to P$ such that $f = gh$.
	$ \begin{array}{c} h & \\ & & \downarrow \\ M \times N \longrightarrow P \end{array} $
	One way to construct it is as follows: Let F be the free module with basis $M \times N$, and let G be the submodule generated by $(x + x', y) - (x, y) - (x', y), (x, y + y') - (x, y) - (x, y'),$ $(rx, y) - r(x, y), (x, ry) - r(x, y)$ for all $x, x' \in M; y, y' \in N, r \in R$. Then $M \otimes_R N = F/G;$ $x \otimes y$ denotes $(x, y) + G$. The relations make $x \otimes y$ linear: 1. $(x + x') \otimes y = x \otimes y + x' \otimes y$ 2. $x \otimes (y + y') = x \otimes y + x \otimes y'$ 3. $r(x \otimes y) = rx \otimes y = x \otimes ry$ Note that in general, an element of $M \otimes N$ is a sum (linear combination) of elements in the form $x \otimes y$.
	Basic properties (prove using UMP) 1. $M \otimes N \cong N \otimes M$ 2. $(M \otimes N) \otimes P \cong M \otimes (N \otimes P)$ 3. $M \otimes (N \oplus P) \cong (M \otimes N) \oplus (M \otimes P)$ 4. $R \otimes_R M \cong M, R^m \otimes M \cong M^m$ where A^m means the direct sum of m copies of A. 5. $R^m \otimes R^n = R^{mn}$.
	The tensor product $f_1 \otimes f_2$ of homomorphisms $f_1: M_1 \to N_1, f_2: M_2 \to N_2$ is the map $f: M_1 \otimes M_2 \to N_1 \otimes N_2$ such that $f(x_1 \otimes x_2) = f_1(x_1) \otimes f_2(x_2)$. Note that $(g_1 \otimes g_2) \circ (f_1 \otimes f_2) = (g_1 \circ f_1) \otimes (g_2 \circ f_2)$. When applied to the linear transformations corresponding to the homomorphisms, the tensor (Kronecker) product of $p \times q$ matrix A and $r \times s$ matrix B is

 $A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1q}B \\ \vdots & \ddots & \vdots \\ a_{p1}B & \cdots & a_{pq}B \end{bmatrix}.$ The ordering of the basis is $v_1 \otimes w_1, \dots, v_1 \otimes w_q, \dots, v_p \otimes w_q$. For the tensor product of algebras, multiplication is given by $(a \otimes b)(a' \otimes b') = aa' \otimes bb'$. Noncommutative rings: The **tensor product** $M \otimes_R N$ of *right* R-module M_R and *left* R-module $_RN$ is an abelian group T (along with a bilinear map $h: M \times N \to T$) satisfying the <u>Universal Mapping Property</u>: for any biadditive, R-balanced map $f: M \times N \rightarrow P$ 1. f(x + x', y) = f(x, y) + f(x', y), f(x, y + y') = f(x, y) + f(x, y')2. f(xr, y) = f(x, ry)there is a unique abelian group homomorphism $g: T \to P$ such that f = gh. One way to construct it is as follows: Let F be the free module with basis $M \times N$, and let G be the submodule generated by (x + x', y) - (x, y) - (x', y), (x, y + y') - (x, y) - (x, y'),(xr, y) - (x, ry) for all $x, x' \in M$; $y, y' \in N, r \in R$. Then $M \otimes_R N = F/G$; $x \otimes y$ denotes (x, y) + G. The relations make $x \otimes y$ biadditive and R-balanced: 1. $(x + x') \otimes y = x \otimes y + x' \otimes y$ 2. $x \otimes (y + y') = x \otimes y + x \otimes y'$ 3. $xr \otimes y = x \otimes ry$ If M is a (S,R) bimodule and N is a (R,T) module, then $M \otimes N$ is a S-T bimodule. Definitions generalize to more modules with multiadditive balanced maps. The above properties all hold except for commutativity; (2) is replaced by $M \otimes_R N \otimes_S P \cong$ $(M \otimes_R N) \otimes_S P \cong M \otimes_R (N \otimes_S P).$

6	Galois Theory
6-1	Symmetric Polynomials
	Symmetric Polynomials
	The elementary symmetric polynomial in n variables $r_1 = r_2$ of degree k is
	The elementary symmetric polynomial in revaluables x_1, \dots, x_n of degree k is
	$S_k = \sum_{1 \leq i(1) \leq \dots \leq i(k) \leq n} x_{i(1)} \cdots x_{i(k)}.$
	Vieta's Theorem: If
	$(x - \alpha_1) \cdots (x - \alpha_n) = x^n + a_1 x^{n-1} + \dots + a_n$
	Then $\alpha_i = (-1)^i a_i$.
	Newton's identities: Let $w_k = \alpha_1^k + \dots + \alpha_n^k$. Then
	$\frac{1}{w_k} - s_1 w_{k-1} + \dots + (-1)^k s_k w_1 + (-1)^k k s_k = 0$
	<u>Fundamental Theorem of Symmetric Polynomials</u> : Every symmetric polynomial in $R[x]$ can
	be written in a unique way as a polynomial in the elementary symmetric polynomials. The
	Pf. Introduce a lexicographic ordering of the monomials and use induction.
	Corollaries:
	1. If $f(x) \in F[x]$ has roots $\alpha_1, \dots, \alpha_n$ in $K \supseteq F$, and $g(x_1, \dots, x_n) \in F[x_1, \dots, x_n]$ is a
	symmetric polynomial, then $g(\alpha_1,, \alpha_n) \in F$.
	2. If p_1, \dots, p_k is the orbit of p_1 for the operation of the symmetric group on the variables,
	polynomial.
	F
6-2	Discriminant
	If $P(u) = u^n + a + u^{n-1}$ is the proof of P is
	$\prod_{n=1}^{n} P(x) = x^n + a_1 x^{n-1} + \dots + a_n \text{ has roots } a_1, \dots, a_n, \text{ then the discriminant of P is}$
	$D = \prod_{i=1}^{n} \prod_{j=1}^{n} (\alpha_i - \alpha_j) \; .$
	Since D is a symmetric polynomial in the y_{\perp} it can be written in terms of the elementary
	symmetric polynomials. (It can always be defined in terms of Δ whether or not P splits
	completely.)
	$D(\alpha_1, \dots, \alpha_n) = \Delta(s_1, \dots, s_n) = \Delta(-a_1, \dots, (-1)^n a_n)$
	$EX.$ 1 $D(x^2 + bx + c) = b^2 - 4c$
	1. $D(x^{2} + bx + c) = b^{2} - 4c$. 2. $D(x^{3} + nx + a) = -4n^{3} - 27a^{2}$
6-3	Galois Group
	Assume fields have characteristic 0.
	I ne F-automorphisms of an extension K form the Galois group $G(K/F)$ of K over F. K/F is a Galois extension ³ if $I_G(K/F) = [K, F]$
	$Ex. G(\mathbb{C}/\mathbb{R}) = \{I. \text{ conjugation}\}.$
	Any two splitting fields of f over F are isomorphic.

³ In general (when K is not necessarily a finite extension) a Galois extension is defined as a normal, separable field extension. A **separable** polynomial has no repeated roots in a splitting field; n element is separable over F if its minimal polynomial is separable; a separable field extension has every element separable over F.

	Pf. (a) An extension field contains at most one splitting field of f over F. (b) Suppose K_1, K_2 are 2 splitting fields. Take a primitive element $\gamma \in K_1$ with irreducible polynomial g . Choose an extension L of K_2 so that g has a root γ' . Then use (a).
6-4	Fixed Fields
	Let H be a group of automorphisms of a field K. The fixed field of H, K^H , is the set of elements of K fixed by every group element. $K^H = \{ \alpha \in K \sigma(\alpha) = \alpha \ \forall \sigma \in H \}$ <u>Fixed Field Theorem:</u> 1. $[K:K^H] = H $: The degree of K over K^H is equal to the order of the group.
	2. $H = G(K/K^H)$: K is a Galois extension of K^H with Galois group H.
	 Let β₁ ∈ K with H-orbit β₁,, β_r. For any <i>i</i>, there is σ ∈ H with σ(β₁) = β_i. Thus x - β_i h. Since g(x) = (x - β₁) ··· (x - β_r) ∈ K^H[x] by symmetry, g is the irreducible polynomial for β₁ over K^H. r divides the order of H. If [K: F] = ∞, there exist elements in K whose degrees over F are arbitrarily large.
	3. By (1), K/K^H is algebraic, so by (2), $[K:K^H]$ is finite. The stabilizer of a primitive element is trivial, so the orbit has order $n = H $. By (1), γ has degree n over K^H . Then $[K:K^H] = n$.
	4. Let $G = G(K/K^H)$. Then $H \subseteq G \Rightarrow K^G \subseteq K^H$. By definition, every element of G acts as the identity on K^H so $K^H \subseteq K^G$.
	<u>Lüroth's Theorem</u> : Let $F \supset \mathbb{C}$ be a subfield of the field $\mathbb{C}(t)$ of rational functions. Then F is a field $\mathbb{C}(u)$ of rational functions.
6-5	Galois Extensions and Splitting Fields
	Splitting Fields
	A splitting field of $f \in F[x]$ over <i>F</i> is an extension <i>K</i> / <i>F</i> such that 1. <i>f</i> splits completely in K: $f(x) = (x - \alpha_1) \cdots (x - \alpha_n), \alpha_i \in K$.
	A splitting field is a finite extension, and every finite extension is contained in a splitting field.
	Splitting Theorem: If K is the splitting field of some $f(x) \in F[x]$, then any irreducible polynomial $g(x) \in F[x]$ with one root in K splits completely in K. (A field satisfying the latter condition is called a normal extension of F.) Conversely, any finite normal extension is a splitting field
	Pf. Suppose $g(x)$ has the root $\beta \in K$. Then $p_1(\alpha_1,, \alpha_n) = \beta$ for some $p_1 \in F[x_1,, x_n]$. Let
	$p_1,, p_k$ be the orbit of p_1 under the symmetric group. Then $\prod_{i=1}^k (x - p_i(\alpha_1,, \alpha_n)) \in F[x]$ by symmetry so it is divisible by $g(x)$, the irreducible polynomial of β . If K is an extension of F, then an intermediate field satisfies $F \subseteq L \subseteq K$. A proper intermediate field is neither F por K. Note $F \subseteq L \Rightarrow G(K/L) \subseteq G(K/F)$
	The order of $C = C(K/E)$ divides $[K, E]$ since $ C = [K, K]$ and $[K, E] = [K, K]$
	\downarrow The other of $\mu = I_{T}(K/F)$ divides $\downarrow K \downarrow F \downarrow$ since $\lvert I_{T} \rvert = \lvert K \downarrow K \lor \lvert$ and $\lvert K \downarrow F \rvert = \lvert K \downarrow K \lor \lvert K \lor \lvert K \lor \downarrow F \rvert$
	The order of $u = u(n/T)$ divides $[n, T]$, since $[u] = [n, n]$ and $[n, T] = [n, n]$ $[n]$.
	Characteristic Properties of Galois Extensions: For a finite extension K, the following are equivalent.

	3. <i>K</i> is a splitting field over F. <u>Pf.</u> (1) \Leftrightarrow (2): By the Fixed Field Theorem, $ G = [K:K^G]$. (1) \Leftrightarrow (3): Let γ_1 be a primitive element for K, with irreducible polynomial <i>f</i> . Let $\gamma_1,, \gamma_r$ be the roots of <i>f</i> in K. There is a unique F-automorphism σ_i sending $\gamma_1 \rightsquigarrow \gamma_i$ for each i, and these make up the group $G(K/F)$. Thus the order of $G(K/F)$ is equal to the number of conjugates of γ_1 in K. So K/F Galois $\Leftrightarrow r = G = [K:K^G] \Leftrightarrow f$ (degree r) splits completely in K \Leftrightarrow K is a splitting field.
	 If K/F is a Galois extension, and g ∈ F[x] splits completely in K with roots β₁,, β_r, then G operates on the set of roots {β_i}. G operates faithfully if K is a splitting field of g over F. G operates transitively if g is irreducible over F. If K is the splitting field of irreducible g, then G embeds as a transitive subgroup of S_r.
6-6	Fundamental Theorem
	<u>Fundamental Theorem of Galois Theory</u> : Let K be a Galois extension of a field F, and let $G = G(K/F)$. Then there is a bijection between subgroups of G and intermediate fields, defined by
	$H \dashrightarrow K^H$
	$G(K/L) \nleftrightarrow L$ Let $L = K^H$ (the fixed field of a subgroup H of G). L/F is a Galois extension iff H is a normal subgroup of G. If so, $G(L/F) \cong G/H$.
	$G = G(K/F)$ operates on K fixing F. $\begin{cases} K \\ L \\ F \end{cases} H = G(K/L)$ operates on K fixing L. $F \in G(L/F)$ operates here.
	<u><i>Pf.</i></u> Let γ_1 be a primitive element for L/F and let g be the irreducible polynomial for γ_1 over F. Let the roots of g in K be $\gamma_1,, \gamma_r$. For $\sigma \in G, \sigma(\gamma_1) = \gamma_i$, the stabilizer of γ_i is $\sigma H \sigma^{-1}$. Thus $\sigma H \sigma^{-1} = H \Leftrightarrow \gamma_i \in L = K^H$. H is normal \Leftrightarrow All $\gamma_i \in L \Leftrightarrow L/F$ Galois. Restricting σ to L gives a homomorphism $\varphi: G \to G(L/F)$ with kernel H.
6-7	Roots of Unity
	Let $\zeta_n = e^{\frac{2\pi i}{n}}$. $F(\zeta_n)$ is a cyclotomic field . For p prime, the Galois group of $F(\zeta_p)$ is isomorphic to \mathbb{F}_p^{\times} , of order $p - 1$.
	Ex. For $p = 2^r + 1$, G is cyclic of order 2^r . Let ξ be a primitive root modulo p , and $\sigma(\zeta) = \zeta^{\xi}$.
	The degree of each extension in the following chain is 2: $F = K^{\langle \sigma \rangle} \subset K^{\langle \sigma^2 \rangle} \subset \cdots \subset K^{\langle \sigma^{2^r-1} \rangle} \subset K^{\langle \sigma^{2^r-1} \rangle} = K \cdot \cos \frac{2\pi}{p}$ generates $K^{\langle \sigma^{2^r-1} \rangle}$ so the regular p-gon can be constructed.
	<u>Kronecker-Weber Theorem</u> : Every Galois extension of \mathbb{Q} whose Galois group is abelian is contained in a cyclotomic field $\mathbb{Q}(\zeta_n)$. Ex. If p is prime and L is the unique quadratic extension of \mathbb{Q} in $\mathbb{Q}(\zeta_p)$, 1. If $p \equiv 1 \pmod{4}$ then $L = \mathbb{Q}(\sqrt{p})$. 2. If $p \equiv 3 \pmod{4}$ then $L = \mathbb{Q}(i\sqrt{p})$. Show this by letting σ be a generator as before, take the orbit sums of the roots for $\langle \sigma^2 \rangle$.
	Kummer Extensions

	Let F be a subfield o	f C cont	aining $\zeta =$	$e^{2\pi i/p}$, and let K/F	be a Galois extension of degree $a^n \in E$		
	Pf	a by adj	oining a pi	In root (some β with	$\beta^{p} \in F$).		
	1. For $b \in F$, $g(x) = x^p - b$ is either irreducible in F, or splits completely in F. (Take						
	$I \neq \sigma \in G(K/F)$; then $\sigma^k(\beta) = \zeta^{kv}\beta$ for some $v \neq 0$, so G operates transitively on the						
	roots of g.)						
	2. K is a vector s	space ov	ver F; eacl	$\sigma \in G$ is a linear op	erator. Choose a generator σ .		
	$o^r = I$ implies	idenvec	e mainx is tor with eig	$\frac{1}{2}$	all eigenvalues are powers of ζ . $\sigma(\beta^p) = \beta^p \Rightarrow \beta^p \in K^G = F$ but		
	$\beta \notin F$, so $F(\beta)$) = K.			$o(p) = p$, $p \in \mathbb{R}^{-1}$, but		
6-8	Cubic Equations						
	Let K be the splitting	field of	an irreduc	ible cubic polynomia	I f over F with roots $\alpha_1, \alpha_2, \alpha_3$, let		
	D be the discriminan	f of f, a	nd let $G =$	G(K/F).	Proper intermediate fields		
	D is not a square	$\frac{[\Lambda:\Gamma]}{3}$	$G \equiv$ $A_0 \simeq C_0$	$F \subset F(\alpha_{4}) = K$	None		
	in F	Ŭ	113 - 03	$\Gamma \subseteq \Gamma(\alpha_1) = \Lambda$			
	D is a square in F	6	$G \cong S_3$	$F \subset F(\alpha_1)$	$F(\alpha_1), F(\alpha_2), F(\alpha_3), F(\delta)$		
				$\subset F(\alpha_1, \alpha_2) = K$			
	Pf. Let $\delta = (\alpha_1 - \alpha_2)$	$(\alpha_1 - \alpha_2)$	$_{3})(\alpha_{2} - \alpha_{3})$	$) = \pm \sqrt{D}. \ \delta \in F \Leftrightarrow \delta$	fixed by every element of $G \Leftrightarrow$		
	only even permutation	ons in G					
	In general, for an irre	ducible	polynomia	al of any degree, δ =	$\sqrt{D} \in F \Leftrightarrow G$ contains only even		
	permutations.						
	Cubic Formula						
	To solve $r^3 + a_0 r^2 + a_0 r^2$	$-a_{1}x + i$	$a_0 = 0$ first	substitute $r = v - a$	/3 (Tschirnhausen		
	transformation) to pu	$a_1 x + c_1$	e form x^3	+ px + q = 0.			
	For roots $\alpha_1, \ldots, \alpha_n, z$	$x = \alpha_1 + \alpha_1$	$\omega \alpha_2 + \omega^2$	$\alpha_3, z' = \alpha_1 + \omega^2 \alpha_2 + \omega^2 \alpha_3$	ωa_3 are eigenvectors for		
	$\sigma = (123)$. Let $A = \Sigma$	$L_{\rm cvc} \alpha_1^3$, I	$B = \sum_{cvc} \alpha^2$	$\sum_{1}^{2} \alpha_{2}, C = \sum_{\text{cvc}} \alpha_{1} \alpha_{2}^{2}$. T	hen $B - C = \sqrt{D}$. Express		
	A, B + C in terms of e	element	ary symme	etric polynomials, app	oly Vieta's formula, and solve for		
	A, B, C. Find z^3 , then	take the	e cube roo	t:			
		r	$-\frac{3}{q}$	$ p^3 + q^2 - {}^3 q + 1 $	$p^3 \perp q^2$		
		л	2	$\sqrt{27' 4}$ $(2' \sqrt{2})$	27 4		
			N	N S			
6-9	Quartic Equations						
		-					
	Let $f \in F[x]$ be an ir	reducibl	e quartic p	olynomial.			
	Let $\beta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4$	$_4, \beta_2 = \alpha$	$\alpha_1 \alpha_3 + \alpha_2 \alpha_3$	$_{4},\beta_{3}=\alpha_{1}\alpha_{4}+\alpha_{2}\alpha_{3}.$			
	$g(x) = (x - \beta_1)(x $	β_2)(x –	β_3) is the	resolvent cubic of <i>j</i>	f.		
			VVr Doguo	hat is $G = G(K/F)$?	D not oguara		
			D squa	re nlite completely)	D not square D or C (a bas 1 root in E)		
	<i>a</i> irreducible		$D_2(y s)$		C_4 (g has 1 loot in F)		
	$D_2 = \{I \ (12)(34) \ (13)$	3)(24) ($\frac{14}{14}$		54		
	For the ambiguous α	ase. let	$\gamma = \alpha_1 \alpha_2$	$-\alpha_3\alpha_4, \epsilon = \alpha_1 + \alpha_2 -$	$-\alpha_3 - \alpha_4$, $\delta\gamma$ or $\delta\epsilon$ is a square in		
	F iff $G = C_4$.		,				

	Pf. The β_i are distinct since $\beta_1 - \beta_2 = (\alpha_1 - \alpha_4)(\alpha_2 - \alpha_3)$. S_4 operates on $B = \{\beta_i\}$, giving $\varphi: S_4 \to S_3$. If <i>g</i> irreducible, G operates transitively on B, so $3 G $.			
	Special case: $f(x) = x^4 + bx^2 + c = 0$. Then the roots are $\alpha_1, \alpha_2 = \sqrt{\frac{-b \pm \sqrt{b^2 - 4c}}{2}}$,			
	$\alpha_3 = -\alpha_1$, and $\alpha_4 = -\alpha_2$, so $G \subseteq D_4$. Look at expressions such as $\alpha_1 \alpha_2$.			
	 Quartics are solvable in the following way: 1. Adjoin δ = √D. 2. Use Cardano's formula to solve for a root of the resolvent cubic g(x) and adjoin it. 3. The Galois group over the field extension K is a subgroup of D₂. At most 2 more square root extensions suffice. 			
6-10	Quintic Equations and the Impossibility Theorem			
	Quintic Equations Impossibility Theorem: The general quintic equation is not solvable by radicals.			
	1. The following are equivalent: (We say that α is solvable [by radicals] over F.) a. There is a chain of subfields $F = F_0 \subset F_1 \subset \cdots \subset F_r = K \subset \mathbb{C}$ such that $\alpha \in F_r, F_{i+1} = F_i(\beta_{i+1})$ where a power of β_{i+1} is in F_i .			
	b. There is a chain of subfields $F = F_0 \subset F_1 \subset \cdots \subset F_r = K \subset \mathbb{C}$ such that $\alpha \in F_r$, and F_{j+1} is a Galois extension of F_j of prime degree. (Equivalent to (a) by Kummer's Theorem.)			
	c. There is a chain of subfields $F = F_0 \subset F_1 \subset \cdots \subset F_r = K \subset \mathbb{C}$ such that $\alpha \in F_r$, and F_{i+1} is an abelian Galois extension of F_i .			
	2. Let $f, g \in F[x]$, and let F' be a splitting field of fg . K' contains a splitting field K of f , and a splitting field F' of g . Let $G = G(K/F), H = G(F'/F), G = G(K'/F)$. Then G, H are quotients of G (Fundamental Theorem) and G is isomorphic to a subgroup of			
	$G \times H.$			
	$\begin{bmatrix} & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & $			
	$G = \frac{1}{G} H$			
	a. Let the canonical maps $G \to G, G \to H$ send $\sigma \rightsquigarrow \sigma_f, \sigma \rightsquigarrow \sigma_g$. Then $G \to G \times H$			
	3. Let $f \in F[x]$ be a polynomial whose Galois group G is simple and nonabelian. Let F' be a Galois extension of F with Galois group of prime order, and let K' be a splitting field of f over F' . Then $G(K'/F') \cong G$. In other words, we cannot make progress solving for the roots by replacing F by a prime extension. a. From (3), $ G $ divides $ G $ and $ G $ divides $ G \times H = p G $. 2 cases:			
	i. $ \mathcal{G} = G $: Then $ K' = K $, <i>H</i> is a quotient of $ \mathcal{G} $, contradicting simplicity. ii. $ \mathcal{G} = G \times H $: Then $G = G(K'/F')$.			
	4. If f is an irreducible quintic polynomial with Galois group A_5 or S_5 then the roots of f are not solvable over E.			
	a. Adjoin $\delta = \sqrt{D}$ to reduce to A_5 case.			
	b. A_5 is simple.			
	remains irreducible after each extension.			
	5. There exists a polynomial with Galois group S_5 .			

	 a. A subgroup of S₅ containing a 5-cycle and transposition is the whole group. b. If <i>f</i> is a quintic irreducible polynomial with exactly 3 real roots, then the group is S₅ by (a). c. Example: x⁵ + 16x + 2. 			
	In general, a polynomial equation over a field of characteristic 0 is solvable by radicals iff its Galois group is a solvable group. In (4) above, the Galois group after adjoining an element is a subgroup of the previous one, with factor group prime cyclic.			
6-11	Transcendence Theory			
	Lindemann–Weierstrass Theorem: If $\alpha_1,, \alpha_n$ are algebraic numbers linearly independent over the rational numbers \mathbb{Q} , then $e^{\alpha_1},, e^{\alpha_n}$ are algebraically independent over \mathbb{Q} ; in other words the extension field $\mathbb{Q}(e^{\alpha_1},, e^{\alpha_n})$ has transcendence degree n over \mathbb{Q} .			

7	Algebras
	An algebra \mathcal{A} over a ring R is a module \mathcal{A} over R with multiplication defined so that for all
	$x, y, z \in \mathcal{A}, c \in R,$
	1. Associative $x(yz) = (xy)z$
	2. Distributive $x(y+z) = xy + xz, (x+y)z = xz + yz$
	$ \begin{array}{ c c } \hline 3. \\ \hline c(xy) = (cx)y = x(cy) \\ \hline \end{array} $
	If there is an element $1 \in \mathcal{A}$ so that $1x = x1 = x$, then 1 is the identity element. \mathcal{A} is
	commutative if $xy = yx$. \mathcal{A} is a division algebra if each element has an inverse ($xx^{-1} = 1$).
7-1	Division Algebras
	Frobenius Theorem: The only finite-dimensional division algebras D over the real numbers are ℝ (the real numbers), ℂ (the complex numbers) and H (the quaternions). Pf Associate with each d ∈ D the linear transformation T _d (x) = dx. 1. Lemma: The set V of all a ∈ D such that a ² ∈ ℝ, a ² ≤ 0 forms a subspace of codimension 1 (i.e. dim _ℝ (V/D) = 1). Proof: Let p be the characteristic polynomial of T _a . By Cayley-Hamilton, p(T _a) = 0. Since there are no zero factors in D, one irreducible real factor of p must be 0 at a. If the factor is linear (x − r), then a ∈ ℝ, a = 0. If the factor is irreducible quadratic (x ² − 2ℜ(r)x + r ²), then this is the minimal polynomial. Since the minimal polynomial has the same factors as the characteristic polynomial, p(x) = (x ² − 2ℜ(r)x + r ²) ^k . Since our minimal polynomial has no repeated complex root, T _a is diagonalizable over ℂ (see Linear Algebra notes, 8-2). a. If trace(T _a) = 0, then the eigenvalues are pure imaginary ±ri, and T _a ² is diagonalizable with eigenvalues −r ² . Thus T _a ² = −r ² I _V ⇒ a ² = −r ² ≤ 0. b. Conversely, if a ² ≤ 0, then T _a ² = −r ² I _V for some r, and the eigenvalues of T _a can only be ±ri. Then trace(T _a) = 0. c. Hence V = {al trace(T _a) ≤ 0, T: a → trace(₹T _a) is a linear operator with range ℝ (dimension 1). Since V is the kernel, V has codimension 1. 2. From (1), D = V ⊕ ℝ. Since V ² = {v ² v ∈ V} gives the reals in (−∞, 0], V ⁴ gives the reals in [0,∞) and V generates Da as an algebra. 3. Let B(a, b) = −ab-ba/2 = a ^{2+b²-(a+b)²/2. From the definition of V, B is an inner product (positive definite, symmetric). Choose a minimal subspace W of V generating D as an algebra, and let {e_i 1 ≤ i ≤ n} be an orthonormal basis with respect to B. Then (i) -e_i² = 1, (ii) e_ie_j = −e_je_i(i ≠ j). a. If n = 0, V ≅ ℝ. b. If n = 1, V ≅ ℂ. (e_i² = −1) c. If n = 2, V ≡ H. (Check the relations.) d. If n > 2, then usin}
	as an algebra, contradicting minimality.
	Simple and Semisimple Algebras
	[See group theory notes.] [Add some stuff here.]

References
 [A] Algebra by Michael Artin [EoAA] Elements of Abstract Algebra by Richard Dean [PftB] Proofs from the Book by Titu Andreescu and Gabriel Dospinescu [TBGY] Abstract Algebra: The Basic Graduate Year, by Robert Ash Wikipedia