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1 Introduction

The key concept in number theory is the concept of divisibility. With the help of
factorization, the tools of divisibility are fundamental in attacking the vast majority
of the problems in elementary number theory. However, as the difficulty level of the
problems increases, it may become impossible to factorize an expression, at least
over the integers. However, it might be possible to factorize it over some other,
larger, set, like R or C. If that’s the case, one might try to adapt the already
familiar principles of divisibility to this new set, for sake of using their power to
the problem. Now, it turns our that R and C are sets that are too large and too
far from the usual integers, and therefore an adequate theory of divisibility in them
can not be developed (or at least, it will be so different from the integer divisibility
that it will be of no help). This is why one should consider smaller sets, which bear
enough resemblance to Z so that a theory of divisibility can be constructed. In this
note, we will analyze the simplest possible extensions of Z, (quadratic fields) and
study the divisibility in these sets. The results obtained will be helpful for solving a
class of diophantine equations and establishing some beautiful theorems of number
theory. But more importantly, these quadratic fields may be regarded as a window
into algebraic number theory, an extremely rich branch of mathematics that has
arisen exactly from the need to construct divisibility laws in algebraic extensions on
Q, in order to solve some diophantine equations (most importantly, Fermat’s Last
Theorem).

Remark. We do not want to go very deep here and wish to minimize the level of
abstraction. This is why some notions from algebra are simplified, for example rings
are assumed to be commutative, and whatever advanced concepts are introduced,
they are presented to mirror some already familiar concepts from elementary number
theory.
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2 Rings, fields, and other words with multiple meanings

The set of integers, Z, beside being a set, has some considerable properties. We can
add, subtract, multiply elements from Z and these operations will produce as result
elements from Z. It is thus natural to expect, that whatever we want to extend Z
to, this bigger set also have this characteristics. They are encoded in the definition
of a ring.

Definition 2.1. A ring R(+, ·) consists of a set R together with two operations:
+ (addition) and · (multiplication) which have the properties:

i) For all a, b ∈ R, a + b and a · b are elements of R.
ii) The operation + has an inverse −, that is, for any a, b ∈ R, there exists a

unique element c = a− b such that c + b = a.
iii) The operations + and · are associative, that is, for any a, b, c ∈ R, one has

(a + b) + c = a + (b + c) and (a · b) · c = a · (b · c). We denote these numbers by
a + b + c, respectively abc.

iv) The operations +, · are commutative, that is a + b = b + a and ab = ba for
all a, b ∈ R.

v) The addition is distributive with respect to multiplication, that is a(b + c) =
ab + ac and (b + c)a = ba + ca. In other words, we can just open the brackets in
expressions just like we are used to.

vi) Both addition and multiplication have neutral elements, that is, there exist
elements denoted by 0 and 1 such that x + 0 = 0 + x = x for all x ∈ R and
x · 1 = 1 · x = x again for all x ∈ R.

This looks like a long string of properties, but it should not look very intimi-
dating. These are just the basic properties of addition and multiplication that we
all know by heart from our math experience. In fact, the very notion of ring was
inspired by the example of Z, and Z was the first known ring.

Let’s see some examples of rings. Beside Z, Q, R and C are also rings, since the
ability to add and multiply in these sets is already carved deep in our souls. Also
Z/nZ, the set of residues modulo n, and Z[X], the set of polynomials with integer
coefficients, are rings too. For that matter, R[X], the set of all polynomials with
coefficients in a ring R, is also a ring, and I leave to you as an exercise to prove it.

Z has a downside: one cannot always divide in it. And this is the problem of
rings in general. But in some rings, like R or Q, one can always perform division.
These rings are called fields.

Definition 2.2. A field F is a ring in which the multiplication is invertible,
that is, for every x ∈ F, x 6= 0, there exists an element y such that xy = yx = 1.
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This element is denoted by x−1, or 1
x , and generally a

b = ab−1 is the unique element
c such that bc = a.

From our previous examples Q, R, C are rings, while Z and Z[X] are not. If n
is a prime, then Fn = Z/nZ, is also a field, since we know every non-zero residue
has a inverse modulo p. If, however, n is not a prime, then this is not true: taking
n = ab where a, b > 1, the residue â has no inverse modulo n: if âĉ = 1̂ then
ac = nk + 1 = abk + 1 for some integer k, which is impossible since the left-hand
side is divisible by a while the right-hand side is clearly not.

The mnemonic rule for distinguishing rings and fields is simple: in fields we can
divide, in rings - not. It useful to always imagine Z when thinking of a ring and Q
when thinking of a field. Of course, this way of thinking is generally flawed, since
Z is very different from Z/nZ, primarily because the latter is finite and the former
is not. But for now, we will deal only with rings that are very similar to Z, so you
can compare every ring to it and be safe for the moment.

3 Quadratic Rings

The world of rings and fields is immeasurably rich, and the multitude of examples
already shows that. However we deal here only with a special class of rings, called
quadratic.

Consider, for example, the equation x2 − 2y2 = 7z2. We cannot factor the left-
hand side, which is a serious obstacle for solving this equation. And the reason we
cannot do this is because x2 − 2y2 = (x−

√
2y)(x +

√
2y), but

√
2 is not an integer.

If we could add
√

2 to Z, we would be able to factor it, and this is how quadratic
rings are constructed.

Given a ring R and an ”object” x which is not in R, one can try to construct a
new, larger, ring R1 by adding x to the ring. Now, since R1 must be a ring, x ∈ R1

implies immediately that x2 = x · x is also in R1, and by induction xk ∈ R1 for all
k ∈ N. And hence for any ak ∈ R, akx

k ∈ R1, so any sum of the form
∑m

k=0 akx
k

must be in R1, which means R1 must contain all expressions of form
∑m

k=0 akx
k.

As it is easy to prove, the set of all expressions of form
∑m

k=0 akx
k is in fact, a

ring, and from what we saw it is the smallest ring containing R and x. This process
of enlarging the ring by adding a new element x is called ”adjoining x”.

Definition 3.1. Given a ring R, and an object x /∈ R, one defines R[x] to
be the smallest ring containing R and x. R[x] is the set of all expressions of form∑m

k=0 akx
k. One says that x generates R[x] over R, or simply that x is a generator

(of R[x] over R).
The concept of object is rather vague. We could have x any variable, in which

case R[x] will simply be the set of polynomials in x with coefficients in R. However
one may impose some restrictions on x, say x2 = a ∈ R, or any such polynomial
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condition on x. In this case R[x] will be much thinner: for example if x2 = a, then
x2k = ak, x2k+1 = akx, so any power of x can be transformed into an element of R
or x times an element of R, which means R[x] consists of just the expressions ax+b,
a, b ∈ R.

In the above example, one should add
√

2 to Z. One will obtain the ring Z[
√

2],
consisting of expressions of form a + b

√
2, and in this ring, the expression x2 − 2y2

will factor into (x−
√

2y)(x +
√

2y).
One should check that Z[

√
2] = {a + b

√
2 | a, b ∈ Z[

√
2]}, is a ring. Indeed, we

have (a+ b
√

2)+(c+d
√

2) = (a+ c)+ (b+d)
√

2 ∈ Z[
√

2] and (a+ b
√

2)(c+d
√

2) =
ac + 2bd + (bc + ad)

√
2 ∈ Z[

√
2], so Z[

√
2] is stable under both multiplication and

addition. The other ring properties are quite standard to verify.

Definition 3.2. Given an element ε which is a root of a monic quadratic
x2 +ax+b in Z[X], the ring Z[ε] is called a quadratic ring. It consists of expressions
of form x + yε where x, y ∈ R.

The condition that ε is a root of x2+ax+b is crucial for the set {x+yε | x, y ∈ Z}
to be a ring. Indeed, ε2 = −aε− b, hence

(x + yε)(m + nε) = xm + (ym + nx)ε + ynε2

= mn + (ym + nx)ε− yn(aε + b)
= mn− ynb + (ym + nx− yna)ε

and the last expression belongs to Z[ε]. Without the condition that a, b be integers,
we would have ε2 = −aε− b not belonging to Z[ε].

Let us simplify Z[ε] a bit. We know that ε = −a±
√

a2−4b
2 . If we denote D = a2−4b,

then D must not be a perfect square (otherwise ε would belong to Z). We claim
Z[ε] = Z[ε−k] for any integer k. Indeed, m+nε = (m+nk)+n(ε−k)), and ε−k is
a root of the equation (x+k)2 +a(x+k)+ b = 0. Now ε−k = a−2k+

√
D

2 . So we can
eliminate a completely, by setting k = [a2 ]. Thus Z[ε] = Z[

√
D
2 ] or Z[ε] = Z[1+

√
D

2 ],
depending whether a is even or odd.

If a is even, then D = a2 − 4b is divisible by 4 so by setting d = D
4 we get

Z[ε] = Z[
√

d ].
If a is odd, then D = a2 − 4b is congruent to 1 modulo 4. Setting d = D we get

Z[ε] = Z[1+
√

d
2 ]. We thus have established the following theorem:

Theorem 3.3. All quadratic rings are of form Z[
√

d] for d not a perfect square
or Z[1+

√
d

2 ] for d ≡ 1 (mod 4) not a perfect square.

It is an exercise for you to check directly that these are indeed rings.
Note that these rings are all distinct. If d1 6= d2 and |d1| ≤ |d2| then

√
d1 /∈

Z[
√

d2]. Indeed, assume that
√

d1 = a + b
√

d2. Then d1 = a2 + b2d2 + 2ab
√

d2 so
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2ab = 0 and b = 0 or a = 0. If b = 0 then d1 = a2 contradicting the assumption
that d1 is not a perfect square. If a = 0 then d1 = b2d2 and b2 > 1 hence |d1| > |d2|,
contradiction. A similar but messier argument deals with rings of form Z[1+

√
d

2 ],
but we leave it as an exercise.

Notice that every number d can be written uniquely as d′k2 where d′ is square-
free. Then Z[

√
d] = Z[k

√
d′] is a subset of the ring Z[

√
d′]. Similarly, Z[1+

√
d

2 ] is
a subset of the ring Z[1+

√
d′

2 ]. Finally, if d ≡ 1 (mod 4) then Z[
√

d] is a subset of
Z[1+

√
d

2 ]. So it suffices to consider only the cases when d is square-free. Otherwise we
can enlarge the ring and why work with a smaller ring if we can deal with a larger
one? Similarly, if d ≡ 1 (mod 4), it is better to consider Z[1+

√
d

2 ] instead of the
smaller Z[

√
d]. Therefore it suffices to regard only the rings R = Z[

√
d] for square-

free d ≡ 2, 3 (mod 4) and R = Z[1+
√

d
2 ] for square-free d ≡ 1 (mod 4). (Remember

that d divisible by 4 is not square-free).
Remark. It is very important to understand the case d ≡ 1 (mod 4) which gives

rise to the somewhat weirder rings Z[1+
√

d
2 ]. Indeed, if not for this case, all quadratic

rings would have the nice and comfy form Z[
√

d]. The cases d ≡ 1 (mod 4) are uglier
and may result in nastier computations. Nevertheless, they should be understood
and accepted too, as they are not of lesser importance than the others.

If ε is a root of a quadratic equation x2 + ax + b, then ε = −a− ε = b
ε is also a

root of the same quadratic equation, and it belongs to R, too. The elements ε and
ε are called conjugate. In some sense, ε and ε are indistinguishable, because they
satisfy the same condition with respect to Z. We only know about ε that it is a root
of x2 + ax+ b, and this condition does not differentiate ε from ε. The fact that they
are so closely related is very important, since conjugation plays a very important
role.

If ε = a + b
√

d (a, b ∈ Q) then ε = a− b
√

d. From here, it is straightforward to
check that x + y = x + y. Similarly, if x = a + b

√
d, y = u + v

√
d, then

x · y = (a− b
√

d)(u− v
√

d)

= au + bvd− (bu + av)
√

d

= au + bvd + (bu + av)
√

d

= (a + b
√

d)(u + v
√

d)
= x · y.

Finally, (x) = x and note that x = x if and only if x ∈ Z.
As we will see, the concept of conjugate is very useful. So is the concept of norm.

Definition 3.4. For x ∈ R, the norm of x is defined to be N(x) = |xx|. For
x /∈ Z, it is the absolute value of the free term of the quadratic equation satisfied by
x. If x ∈ Z, then N(x) = x2.
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The absolute value is applied only to ensure that the norm is positive, so we can
use it as some sort of absolute value. Note that N(x) > 0 unless x = 0: if N(x) = 0
then xx = 0 so either x = 0 or x = 0, and if x = 0 by conjugating we get x = 0 = 0.

The norm has some nice properties:

Theorem 3.5. For a quadratic ring R, the norm of any number is an integer,
and is a multiplicative function, that is, N(x)N(y) = N(xy). Also N(x) = N(x).

Proof. From the definition, N(a + b
√

d) = |a2 − db2|. It is clearly an integer in
the case d ≡ 2, 3 (mod 4), since a, b are integers. In the case d ≡ 1 (mod 4), a and
b may not be integers. If they aren’t, then 2a, 2b are odd integers hence a2 − db2 =
(2a)2−d(2b)2

4 and (2a)2 − d(2b)2 is divisible by 4 so the norm is an integer. Let
x = a+b

√
d, y = u+v

√
d then xy = (a+b

√
d)(u+v

√
d) = (au+dbv)+(bu+av)

√
d.

Thus

N(xy) = |(au + dbv)2 − d(bu + av)2|
= |a2u2 + 2daubv + d2b2v2 − db2u2 − 2daubv − da2v2|
= |a2u2 + d2b2v2 − db2u2 − da2v2|
= |(a2 − db2)(u2 − dv2)|
= N(x)N(y).

Conjugates and norms are useful to compute ratios in the ring. Like Z is con-
tained in Q, so is Z[ε] contained in Q[ε], and Q[ε] is a field. Indeed, Q[ε] is a ring by
the same reason Z[ε] is. To prove it is a field, we need to show that every non-zero
x ∈ Q[ε] has an inverse 1

x ∈ Q[ε]. Indeed, since x · x ∈ Z[ε] one has x · x
xx = 1 so

1
x = x

±N(x) which belongs to Q[ε]. Correspondingly, Z[ε] is called the ring of integers

of Q[ε] (for ε =
√

d or ε = 1+
√

d
2 ). The norm extends to Q[ε] as well.

4 Divisibility in rings. Units and primes.

Now that we have somewhat established the properties of the quadratic rings,
it is time to establish divisibility in them.

Definition 4.1. For x, y in a ring R = Z[ε], we say that x divides y and write
x | y, if there exists an element z ∈ R such that xz ∈ R.

The following is a simple application of the multiplicativity of the norm.

Theorem 4.2. If x, y ∈ R and x | y then N(x) | N(y).
Proof. If x | y then y = xz, z ∈ R so taking norms N(y) = N(x)N(z) which

means that N(x) | N(y).
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The converse is not necessarily true, as will be shown later.
Checking if x | y in quadratic rings is easy. One needs to take the ratio y

x = ± yx
N(x)

which belongs to Q[ε]. So now we only need to check whether y
x is in Z[ε], which

is done by simply writing y
x ∈ Q[ε] as a + b

√
d and checking if a and b are both

integers. Keep in mind that a integer k divides a number a + bε ∈ R if and only if
k divides both of its parts a and b, because a+bε

k = a
k + b

k ε. Now since y
x = ± yx

N(x)
we deduce the following property.

Theorem 4.3. If x, y ∈ R then x divides y if and only if N(x) divides yx, that
is yx has both components divisible by N(x).

Note that if x has norm equal to 1, the above theorem tells us that x divides
every other number y from R.

Definition 4.4. An element u ∈ R is called a unit if it divides every element of
R.

To check that u is a unit, it is enough to check that it is invertible, i.e. it has
a inverse 1

u belonging to R. Indeed, if u is a unit then it must divide 1 so 1
u must

belong to R. Conversely, if 1
u ∈ R then for any x ∈ R, x

u = x · 1
u ∈ R so u | x. The

following theorem characterizes the units of a quadratic ring.

Theorem 4.5. An element u of a quadratic ring is a unit if and only if its norm
is 1.

Proof. If the norm of u is 1 then uu = ±1 so 1
u = ±u so it belongs to the ring.

Conversely, if u is a unit then u | 1 so N(u) | N(1) = 1 which implies that N(u) = 1.

The units are very important for understanding divisibility in rings. Indeed, since
units divide every element of the ring, they are somehow irrelevant for purposes of
divisibility and can always be ignored. We now understand why a proper divisibility
theory for R and Q, and for fields in general, cannot be constructed. As every
element of a field has an inverse, it is a unit, which means every element divides
each other so such a theory makes no sense. So the weakness of Z is in a sense its
strength: the fact that in Z we can not always divide implies that the divisibility is
not so simple as in Q or R, thus a beautiful and rich theory can be constructed.

The units of Z are 1 and −1, but in Z[ε] we can have more units.

Definition 4.6. Two numbers x and y are called associated (and we write
x ∼ y) if and only if they divide each other. Equivalently, their ratio must be a unit
in R.
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Indeed, x ∼ y if and only if y
x , x

y are both in R i.e. x
y is in R and has an inverse, so

is a unit. Clearly, units are precisely numbers associated with 1. Often for purposes
of divisibility associated numbers are indistinguishable.

Definition 4.7. A number π ∈ R is called a prime if it is only divisible by units
and numbers associated with it. Equivalently, π can not be written as π1π2 where
π1, π2 are not units.

This definition mirrors the definition in Z. A little remark must be made: ac-
cording to the definition, −2 should also be a prime in Z, which contradicts our
knowledge that 2 is a prime and −2 is not. However, this is only because we are
used to constructing divisibility in N, the positive part of Z. In the general case, we
cannot perform this distinction (what are the positive numbers in Z[

√
−1]?), so we

must deal with the units, too. In fact, every number associated with a prime is also
a prime, which means we somehow have multiple copies of every prime. But this is
not a huge problem since we can ignore units when we need to.

Now we have given the definition of a prime, but do we even know they exist,
and more importantly, do we know that we can factorize each number into primes,
like in Z? The answer is positive in both cases, and relies on norm.

Assume we have a number r ∈ R. If r is a prime, we are done. If not, then r =
r1r2 and none of the r1, r2 is a unit so N(r1), N(r2) > 1. The equality N(r1)N(r2) =
N(r) tells that N(r1), N(r2) < N(r). Now we work with r1, r2, and if they are not
primes again we decompose them into factors. As we see that the norm of the factors
decreases, we cannot continue the process indefinitely, so we must eventually stop,
which gives us a decomposition of r into factors that cannot be decomposed further,
i.e. into primes.

We have almost constructed a divisibility theory for rings by simply copying the
theory for Z. There is one important question left: is the factorization into primes
unique? Such rings are called Unique Factorization Domains (UFD’s) and we are
considering them for the purposes of these notes.

We must note that decomposition into primes must be unique up to units, since
for example pq = (−p)(−q) are two different decompositions of the same number.
But if we decide to consider associated primes as signifying the same prime, we get
rid of this problem. So the question is: given two decompositions of the same number
into primes, are the primes entering the two decompositions pairwise associated?

Unfortunately, the general answer is no, and this is a huge deception. In Z[
√
−5],

6 = 2 ·3 = (1+
√
−5)(1−

√
−5). It turns out that these four numbers are all primes,

and none them is associated with another.
Indeed, for example 2 has norm 4 so if it would not be a prime it would be

π1π2 with N(π1), N(π2) > 1 which can only happen when N(π1) = N(π2) = 2.
But there can be no numbers of norm 2 in Z[

√
−5]: if N(x +

√
−5y) = 2 then

x2 + 5y2 = 2 which is clearly impossible since than we must have y = 0 (otherwise
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5y2 > 2) and so x2 = 2, which has no solutions in Z. We deduce similarly that
3, 1 +

√
−5, 1−

√
−5 are primes, and they are not associated with each other since

they have different norms (well, 1+
√
−5 and 1−

√
−5 have the same norm, but we

only need to compare factors from the left-hand side to factors from the right-hand
side).

This failure is very disappointing, and now we know we cannot construct a proper
divisibility theory for all quadratic rings. However for some small values of d we
still can achieve success, but we need another tool borrowed from Z.

5 The Euclidean Algorithm

In Z (well, actually in N, but we can extend the method for Z), we have the
Euclidean algorithm, that gives us a way to construct the greatest common divisor
of any two numbers as a linear combination of them. If you have a good memory
(I don’t but I still remember), you may recall that the ability to find the common
divisor of any two numbers was enough to prove that prime factorization is unique.
Indeed, if we would be able to construct an Euclidean Algorithm in Z[

√
−5], then

we would have 1 = 2a + (1 +
√

5)b (as their greatest common divisor is clearly 1),
but this is impossible as the norm of 2a + (1 +

√
5)b is (2a + b)2 + 5b2 which is

always even. So now we set to formulate an Euclidean Algorithm for at least some
quadratic rings R, unless we want to fail completely and close the topic.

The Euclidean Algorithm was based on the remainder: for any a, b ∈ Z, b 6= 0,
there exists a number q ∈ Z and r with 0 < |r| < |b| such that a = bq + r. Then,
it replaced the pair (a, b) with the pair (b, r) and continued doing the same thing
until it reached 0 (and it did, because the absolute values decreased), and the other
number of the final pair was exactly the greatest common divisor.

In rings R, the absolute value is replaced by norm. So in order to concoct an
Euclidean Algorithm, we need to be able to prove the following fact:

Theorem 5.1. If a, b ∈ R and R is a quadratic ring, then for b 6= 0 there exist
q, r ∈ R such that N(r) < N(b) such that a = bq + r.

If this theorem is true, then the Euclidean Algorithm will work. Unfortunately,
the example of Z[

√
−5] shows that theorem 5.1. is not true for all rings, but as we

will see, it is true in some simple cases.
The condition a = bq + r is equivalent to a

b = q + r
b and N( r

b ) < 1. If R = Z[ε]
then a

b ∈ Q[ε]. The theorem 5.1. now means that for every x ∈ Q[ε] there exists a
number q ∈ R such that N(x− q) < 1.

Let x = u + vε. It is reasonable to set q = a + bε where a is the closest integer
to u, b is the closest integer to v. We know that |a − u| ≤ 1

2 , |b − v| ≤ 1
2 so x − q

9



has both components of absolute value at most 1. It is now needed to establish for
which ε this implies that N((a− u) + (b− v)ε) < 1.

Recall that we considered ε =
√

d for d ≡ 2, 3 (mod 4) and ε = 1+
√

d
2 for d ≡ 1

(mod 4).

In the first case,

N((a− u) + (b− v)ε) = |(a− u)2 − d(b− v)2|

and (a− u)2 ≤ 1
4 , (b− v)2 ≤ 1

4 .

For d negative, we conclude |(a−u)2−d(b−v)2| ≤ 1
4 + |d|

4 = |d|+1
4 . Thus |d|+1

4 < 1
which means |d| < 3 so d ∈ {−2,−1}.

For d positive, we have |(a− u)2 − d(b− v)2| ≤ d
4 so we need d

4 < 1 so d ∈ {2, 3}
(d = 1 is a perfect square).

In the second case,

N((a− u) + (b− v)ε) = |(a− u)2 + (a− u)(b− v) +
1− d

4
(b− v)2|.

For d negative we have |(a−u)2+(a−u)(b−v)+ 1−d
4 (b−v)2| ≤ 1

4+ 1
4+ 1−d

4 · 14 = 9−d
16

and we need 9−d
16 < 1 i.e. d > −7 or d = −3.

For d positive we have |(a−u)2+(a−u)(b−v)+ 1−d
4 (b−v)2| ≤ d−1

16 + 1
4 + 1

4 = d+7
16

and we need d + 7 < 16 which gives d = 5.

For the values of d we have just established, the Euclidean Algorithm works.
Such rings are called Euclidean Domains.

Theorem 5.2. Z[
√
−1], Z[

√
−2], Z[

√
2], Z[

√
3], Z[1+

√
−3

2 ], Z[1+
√

5
2 ] are Euclidean

Domains.

In Euclidean domains, just like in Z, the Euclid lemma is true:

Theorem 5.3. (Euclid’s Lemma) If R is an Euclidean domain and a, b ∈ R,
then the greatest common divisor of a, b exists and can be written as sa + tb for
s, t ∈ R. The greatest common divisor of a and b is denoted by (a, b) or gcd(a, b).

The proof of this theorem is just like in the integer case, and we will not repeat
it here.

The greatest common divisor of a and b can be defined as the number c such
that c | a, c | b and if c′ | a, c′ | b then c′ | c. It is clear that the greatest common
divisor is determined up to a unit: if c is the greatest common divisor, so is any
number associated with it.

10



If two numbers have their greatest common divisor equal to 1 (i.e. the only
common factors are units) then we say these two numbers are relatively prime
(coprime).

The following fact is again copied from Z:

Theorem 5.4. If a | bc and a is relatively prime to b, then a | c.

Proof. If (a, b) = 1 then ax + by = 1 for some x, y ∈ R. Multiplying by c we
get c = acx + bcy. Since acx and bcy are divisible by a, we deduce c also is.

If π is a prime then its factors are only units and numbers associated to it.
It follows that every number is either divisible by π, or is relatively prime to it.
Therefore theorem 5.4. applied to primes says:

Theorem 5.5. If π is a prime and π | ab, then π | a or π | b.

Again those with good memory will remember that theorem 5.5. was the main
ingredient of the proof of the unique factorization theorem for Z. Transferring the
argument for the Euclidean Domains, one gets the following:

Theorem 5.6. If R is an Euclidean Domain, then the prime factorization of
every number is unique, up to units. That is, if π1π2 . . . πm = π′1π

′
2 . . . π′n and

π1, . . . , πm, π′1, . . . π
′
n are primes, then m = n and we can reorder the primes such

that πi ∼ π′i (i = 1, 2, . . . ,m).
Particularly, the quadratic rings mentioned in theorem 5.3. are UFD’s.

6 Classification of primes

Having established the unique decomposition into primes in some quadratic
rings R, we should ask ourselves what are the primes in R.

Firstly, we need some convention. From now on, ”primes” will signify prime
numbers in R. The primes in Z will be called “integer primes”.

It is clear that a number is a prime if and only if its conjugate is prime. Indeed,
any factorization of x can be transformed into a factorization of x by conjugation,
and vice-versa.

The norm gives us an invaluable insight.

Theorem 6.1. If N(π) is prime (in Z) then π is a prime (in R).

Proof. If π = xy for non-units x, y then N(π) = N(x)N(y) and N(x), N(y) > 1,
which contradicts the assumption that N(π) is prime.

11



We see that if the norm of a number is prime integer, then the number itself
is a prime. The converse does not hold, as the example of 3 in Z[

√
−1] shows.

Indeed, N(3) = 9 = 32 so if 3 = π1π2 for π1, π2 not units, then we must have
N(π1) = N(π2) = 3, which is impossible since the equation a2 + b2 = 3 has no
solution in integers. However, the norm of a prime number must not have too many
divisors.

Firstly, if π is a prime then it must divide an integer prime. Indeed, π | N(π)
which is an integer, so is a product of integer primes. Theorem 5.5 now implies
that π divides one of these primes, say p. Then N(π) | N(p) = p2, so N(π) = p or
N(π) = p2.

In the first case, ππ = p, so p is the product of two conjugate primes of norm p.
In the second case N(π) = N(p) and as π | p it means π ∼ p so p is a prime in R.
We must now distinguish these two cases. Let p be odd.

Assume the first case holds. Then p = N(π) = a2 − db2 where a, b are either
integers or half-integers so 4p = (2a)2−d(2b)2 which means that d is a perfect square
modulo p.

Assume the second case holds. We claim that d is not a square modulo p.
Indeed, if it were then p would divide x2 − d = (x−

√
d)(x +

√
d) for some integer

x, contradicting theorem 5.5 because p divides neither x +
√

d nor x−
√

d.
We thus have established that for p odd, the first case holds when d is a square

residue modulo p, and the second case holds when d is not a square residue modulo
p.

The results obtained can be encoded in the following theorem:

Theorem 6.2. In a quadratic ring R, all primes must have divide an integer
prime p and so their norm is either p or p2. If p is odd and d a perfect square modulo
p, then p is the product of two conjugate primes of norm p. If p is odd and d is not
a perfect square modulo p, then p is a prime in R.

We are left to consider the case p = 2. Let’s analyze the rings one by one:

• In Z[1+
√
−3

2 ], 2 is a prime. Indeed, if it was not then we would have 2 =
(a + bε)(a− bε) = a2 − ab + b2 for a, b ∈ Z. However a2 − ab + b2 has no solutions,
as easily seen modulo 4.

• In Z[
√
−2], 2 is associated to the square of a prime, as 2 = −

√
−22.

• In Z[
√
−1], 2 is associated to the square of a prime, as

2 = (1 +
√
−1)(1−

√
−1) = −

√
−1(1 +

√
−1)2.

• In Z[
√

2], 2 is the square of the prime
√

2.
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• In Z[
√

3], 2 is the product of two non-associated primes
√

3 + 1 and
√

3− 1.

• In Z[1+
√

5
2 ], 2 is prime. If it wasn’t, then we would have 2 = (a + bε)(a− bε) =

a2 − ab− b2, and this equation has no solution modulo 4.

It should be noted that unless d = p or p = 2 and R = Z[
√

3], Z[
√
−1], then

the two conjugated primes dividing p are not associated (if p is the product of two
primes). Indeed, if p = ππ and π ∼ π then π2 ∼ p and hence

p | 4(a + b
√

d)2 = (2a)2 + d(2b)2 + 8abd,

which implies p | 4ab, p | 4a2 + d4b2 so p | 2a, p | 2b. This is impossible because
(2a)2 − d(2b)2 = 4p is not divisible by p2.

Definition 6.3. If an integer prime decomposes as the product of two primes
in R, we say p splits in R. If the two primes are associated, we say p ramifies in R.

7 The Chinese Remainder Theorem. The Residue Class
Field. Fermat and Euler.

The congruence can be naturally defined for Unique Factorization Domains: one
says that x ≡ y (mod z) if and only if z | x− y. The congruence clearly inherits all
the properties of its elementary counterpart.

Theorem 7.1. (The Chinese Remainder Theorem) Given pairwise co-
prime numbers b1, b2, . . . , bn and any numbers a1, a2, . . . , an in R there exists a
number x ∈ R such that x ≡ ai (mod bi). Any two such numbers are congruent
modulo b1b2 · · · bn.

We will not prove this theorem, since it is a shameless imitation of the proof for
Z.

For a number p ∈ Z, we can define Z/pZ be the set of all residue classes modulo
p. It is naturally a ring, and even a field if p is prime, and has |p| elements. Similarly,
for a number π in R, we can define R/πR be the set of all residues modulo π. We
will write x̂ for the class of residues modulo π represented by x.

Theorem 7.2. For a number π, the residue class R/πR is a finite ring containing
N(π) elements. Moreover, R/πR is a field if and only if π is prime.

We will prove this problem in several steps. The easiest to prove is that R/πR
is finite. Indeed, as π | N(π), we conclude that two numbers a1 + b1ε and a2 + b2ε
that satisfy a1 ≡ a2 (mod N(π)) and b1 ≡ b2 (mod N(π)) will also be congruent
modulo π. Since there are N(π)2 pairs of integer residues modulo N(π), it follows
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that R/πR has at most N(π)2 elements, so is finite. Note that instead of N(π) one
can take any integer N divisible by π, and one gets the bound N2.

Next, if π is not prime write π = π1π2 for non-units π1, π2. We have the equality
π̂1π̂2 = 0̂. Since π̂1, π̂2 are non-zero, this equality implies that R/πR is not a field,
since then π̂1, π̂2 are not invertible.

If π is a prime then R/πR is a field, and the proof is the same as in the elementary
case. If â is a non-zero residue modulo π, then (a, π) = 1 hence by Euclid’s lemma
there exist b, c such that ab + cπ = 1. Thus âb̂ = 1̂ so â is invertible.

The hardest part is to prove that R/πR has exactly N(π) elements. We will do
this by induction on the number of prime factors of π.

First, assume that π is a prime. As we know π | p for some integer prime p and
we either have N(π) = p or N(π) = p2 and π ∼ p. In the first case, π = a+ bε hence
bε ≡ a (mod π). Since b is invertible modulo p, we conclude that ε is congruent to
ab1 modulo π, where b1 is chosen to satisfy the congruence bb1 ≡ 1 (mod p). We
conclude that ε is congruent to an integer modulo π and from here every element of
R is congruent to an integer modulo π. Since there are only p classes in Z modulo p
and π | p, we conclude that the residue class field has at most p elements. Now, the
classes 0̂, 1̂, . . . , ˆp− 1 are all distinct, since î = ĵ implies π | i − j so by passing to
norm we get p | (i− j)2, impossible. Thus there are exactly p classes, which proves
the claim in this case. In the second case, we have π ≡ p and clearly that R/πR is
the same as R/pR. Now as p is an integer, we conclude that R/pR has at most p2

elements. It is enough now to exhibit p2 distinct classes to conclude the claim in this
case too. Indeed, consider the p2 numbers i + jε where i, j ∈ {0, 1, . . . , p− 1}. They
all give distinct residues, for if i1+j1ε ≡ i2+j2ε (mod p) then p | (i1−i2)+ε(j1−j2)
so p | i1− i2, p | j1− j2, which is impossible. Thus R/pR has p2 elements, as desired.

The case π is prime is the base. Now let’s perform the induction step. Assume
that π = π1x where π1 is a prime, so the claim is proven for π1 and for x. Consider
b1, . . . , bN(π1) be a set of representatives modulo π1 and c1, . . . , cN(x) a set of repre-
sentatives modulo x. We claim that the numbers bi + πcj are a complete set of rep-
resentatives modulo π1x. Since the number of such elements is N(π1)N(x) = N(π),
this will finish the proof the theorem. Indeed, for every r ∈ R, r ≡ bi (mod π1) for
some i so r − bi = π1s for s ∈ R. Then s ≡ cj (mod x) for some j so s − cj = xt
for some t ∈ R. Then r − (bi + π1cj) = π1s− π1cj = π1xt = πt hence r ≡ b1 + π1cj

(mod π). We are left to prove that bi + π1cj are pairwise non-congruent modulo
π. Indeed, if bi + π1cj ≡ bk + π1cl (mod π) then bi ≡ bk (mod π1) so i = k. Then
(bi + π1cj)− (bk + π2cl) = π1(cj − cl). Since it must be divisible by π = π1x, cj − cl

must be divisible by x, possible only when j = l i.e. (i, j) and (k, l) are the same
pair. The proof is finished.
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Theorem 7.3. (Fermat) Given a prime π the following congruence holds for
all a:

aN(π) ≡ a (mod π).

Proof. Again, it is a reproduction of the elementary version. If a is divisible by
π, the congruence is clear. If a is not, then it is coprime to π. If x̂1, x̂2, . . . , ˆxN(π)−1

are the non-zero residues modulo π, then âx̂1, âx̂2, . . . , â ˆxN(π)−1 must also be distinct
non-zero residues, so they must be a permutation of x̂1, x̂2, . . . , ˆxN(π)−1. Taking
the product one gets x̂1x̂2 · · · ˆxN(π)−1 = âx̂1âx̂2 · · · â ˆxN(π)−1. Now simplifying the
invertible elements x̂1, x̂2, . . . , ˆxN(π)−1 one get 1̂ = âN(π)−1. Thus aN(π)−1 ≡ 1
(mod π) or aN(π) ≡ a (mod π).

For each number π, we can denote by φ(π) the number of residues in R/πR that
are coprime to π (which are invertible). Fermat’s Theorem generalizes to

Theorem 7.4. (Euler) The following congruence holds for a coprime to π:

aφ(π) ≡ 1 (mod π).

Like in the previous theorem, the proof is a mere adaptation of the elementary
version, and we will not repeat it here.

Now, φ(π) can be explicitly computed, and the proof is again as unoriginal as
possible.

Theorem 7.5. If π ≡
∏m

i=1 πi
ai where π1, π2, . . . , πm are distinct primes, then

φ(π) =
m∏

i=1

(
N(πi)ai −N(πi)ai−1

)
= N(π)

m∏
i=1

N(πi)− 1
N(πi)

.

Proof. The residue of any number r modulo π is uniquely determined by the
residues ri of this number modulo πai

i , according to the Chinese Remainder The-
orem. In order for r to be coprime to π, it is necessary and sufficient that ev-
ery of the ri be not divisible by πi. Now there are N(πi)ai residues modulo πai

i .
Of these, a fraction of 1

N(πi)
is divisible by πi (prove it yourself!), so there are

(1 − 1
N(πi)

)N(πi)k = N(πi)k − N(πi)k−1 admissible residues for ri. Thus there are∏m
i=1

(
N(πi)k −N(πk−1

i )
)

admissible m-tuples (r1, r2, . . . , rm). Each of these m-
tuples gives rise to a unique residue modulo π, by the Chinese Remainder Theorem,
and this finishes the proof.

Theorem 7.6. (Wilson) If π is a prime, then the product of all non-zero
residues modulo π is congruent to −1 modulo π.

The proof is again, an IQ-free copy-paste.
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8 Numbers with bounded norm. Units. Pell’s Equa-
tion.

We have mentioned before that numbers with the same norm are not necessarily
associated. However, we can prove that there are finitely many non-associated
numbers with a given norm.

Theorem 8.1 For any positive integer M , there are only finitely many pairwise
non-associated numbers with norm M .

Proof 1. If a number has norm M then it divides M . Writing M as a product
of primes, it is clear that one can select finitely many divisors (up to units). Namely,
if M ∼

∏m
i=1 πi

ai , every divisor of it is associated to a number of the form
∏m

i=1 pi
bi

for bi ∈ {0, 1, . . . , ai}, and there are only
∏m

i=1(ai+1) such choices of (b1, b2, . . . , bm).

Proof 2. We claim among any M2+1 numbers with norm M two are associated.
Indeed, assume xi + yiε, i = 1, 2, . . . ,M2 +1 are numbers with norm M . Since there
are only M2 pairs of residues modulo M2, by the pigeonhole principle there exist
two numbers u = xk + ykε, v = xl + ylε such that M | xk − xl, M | yk − yl. Then
M | u− v and since u, v | M we conclude u | v and v | u so u ∼ v, as desired.

Note that the bound obtained in the first proof is much smaller then the bound
obtained in the second.

As an immediate corollary, one can prove

Theorem 8.2. For any M > 0, there are only finitely many pairwise non-
associated numbers with norm less than M .

Now, since the ratio of two numbers is always a unit, it would be helpful to know
more about the units of the ring.

For R = Z[
√
−1], Z[

√
−2] or R = Z[1+

√
−3

2 ], the units can be easily listed.

• For Z[
√
−1], N(a+b

√
−1) = 1 means a2+b2 = 1 possible only for a = ±1, b = 0

or a = 0, b = ±1 so ±1,±
√
−1 are the only units.

• For Z[
√
−2], one similarly gets the equation a2 + 2b2 = 1 possible only for

a = ±1 so the only units in this ring are 1 and −1.

• For Z[1+
√
−3

2 ], one gets the equation x2+y2+xy = 1, i.e. 3(x+y)2+(x−y)2 = 4,
which only has x = ±1, y = 0, x = 0, y = ±1 and x = 1, y = −1 or x = 1, y = −1 as
solutions. So the units are ±1 and ±1±

√
−3

2 . These are the sixth roots of unity.

For other rings this method does not work. Indeed, for d > 0, the norm of
x + y

√
d is |x2 − dy2| and now we cannot conclude that x, y are bounded. In fact,
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we have infinitely many solutions to the equation |x2 − dy2| = 1 and we will use
theorem 8.2. to prove it.

This time we do not assume that d > 0 is square-free and neither that R = Z[
√

d]
is a UFD. Indeed, we will only use theorem 8.2 (and its second proof does not require
UFD’s) and only initial considerations from section 4.

Consider the numbers {
√

d}, {2
√

d}, . . . , {(N+1)
√

d} ∈ (0, 1). By the pigeonhole
principle there are two of them which are at most 1

N apart, say |{i
√

d}−{j
√

d}| ≤ 1
N .

Since {i
√

d} = i
√

d− k for some integer k and {j
√

d} = j
√

d− l for some integer l,
we deduce |(i− j)

√
d− (k − l)| ≤ 1

N i.e. we have x1, y1 such that |x1 − y1

√
d| < 1

N .
We also deduce |x1| ≤

√
dN , |y1| ≤ N so

|x2
1 − dy2

1| = |x1 − y1

√
d||x1 +

√
dN | ≤ 1

N
· (
√

dN +
√

dN) < 2
√

d.

We thus have found a number z1 = x1 − y1

√
d in the ring R with norm at most

2
√

d. Now we can pick up a larger N ′ and apply the method to find another x2, y2

such that z2 = x2 − y2

√
d has again norm at most 2

√
d. Moreover, if we choose

N ′ big enough we will have x1 − y1

√
d 6= x2 − y2

√
d. Indeed, since d is irrational,

|x1 − y1

√
d| > 0, so taking N ′ > 1

|x1−y1

√
d| , we must have |x2 − y2

√
d| < |x1 − y1

√
d|

which implies the result. Continuing, we find an infinite number of numbers z1, z2, . . .
which have all norm at most 2

√
d. But theorem 8.2. guarantees there are only

finitely many of them which are pairwise non-associated. Let z1, z2, . . . , zk be a
maximal set of pairwise non-associated members of the sequence. Then every zi is
associated to one of z1, z2, . . . , zk which means that infinitely many numbers zi are
associated with, say, z1. This means infinitely many of the zi

z1
are units, and since

they are distinct we have obtained infinitely many units. This means that there are
infinitely many pairs of numbers a, b such that |a2 − db2| = 1. Then a2 − db2 = 1 or
a2 − db2 = −1 but in any case (a2 − db2)2 = (a2 + db2)− d(2ab)2 = 1. Therefore we
have proved the following theorem:

Theorem 8.3. If d > 0 is not a perfect square, then Pell’s Equation x2−dy2 = 1
has infinitely many solutions in integers.

9 Applications and Examples

It is time to test in battle all the machinery I’ve spent so much effort to write and
you’ve spent so much effort to read. You are encouraged to seek solutions without
UFD’s, since I hope this will enhance your respect for them.

Example 9.1. Solve the equation x2 + 2y2 = 3z2 in integers.

Solution. If is clear that if (x, y, z) have a common divisor d, then (x
d , y

d , z
d)

is also a solution, hence it suffices to consider the case gcd(x, y, z) = 1. Then we
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can conclude (x, y) = 1. Otherwise, if p | x, p | y for p prime, then p2 | x2 + 2y2

so p2 | 3z2 hence p | z and (x, y, z) 6= 1. Similarly, one can prove (x, z) = 1 and
(y, z) = 1.

Now we can factor the left-hand side in R = Z[
√
−2] and we get (x+

√
−2y)(x−√

−2y) = 3z2. Set u = x+y
√
−2, v = x−y

√
−2. We prove u, v are coprime. Indeed,

let π be a prime divisor of u and v. Then π | v + u = 2x and π | u − v = 2
√
−2y.

As x, y are coprime in Z then they are coprime in R, too (because their norms are
coprime). It follows that π must divide either 2

√
−2 ∼ (

√
−2)3. We can only have

π ∼
√
−2 which implies that π | uv = 3z2 so π | z. Hence N(π) | z2 thus z is even

and so must be x, violating the condition (x, z) = 1. Thus u, v must be coprime.

Now their product is 3z2 = (1 +
√
−2)(1 −

√
−2)z2. Since 1 +

√
−2, 1 −

√
−2

are primes, we must conclude that u = ±3r2, v = ±s2 or u = ±(1 +
√
−2)r2, v =

±(1 −
√
−2)s2 (since the only units in Z[

√
−2] are 1,−1) or two other analogous

cases. The first case is impossible since then 3 | u so 3 | u = v hence u, v are not
coprime.

Assume u = (1 +
√
−2)r2, v = (1−

√
−2)s2. If r = a + b

√
−2 we get

x + y
√
−2 = (1 +

√
−2)(a + b

√
−2)2

= (1 +
√
−2)(a2 − 2b2 + 2ab

√
−2)

= a2 − 2b2 − 4ab + (a2 − 2b2 + 2ab)
√

2.

We then deduce x = a2 − 2b2 − 4ab, y = a2 − 2b2 + 2ab hence we compute z =
±(a2 + 2b2). The other cases are similar and lead, essentially, to the same solution
(up to the sign). Now recalling that we divided in the beginning all x, y, z by their
common divisor d, we get x = ±d(a2 − 2b2 − 4ab), y = ±d(a2 − 2b2 + 2ab), z =
±d(a2 + 2b2). Also note that a, b must be coprime and a must be odd, in order for
a2 − 2b2 − 4ab, a2 + 2b2, a2 − 2b2 + 2ab to be coprime.

Example 9.2. (IMO Shortlist, 1988) Let x, y, z be positive integers such
that xy = z2 + 1. Prove that there exist integers a, b, c, d such that x = a2 + b2,
y = c2 + d2.

Solution. In Z[
√
−1], xy = (z+i)(z+i) (we set

√
−1 = i, a thing we should have

done long ago). Every prime π dividing z2 +1 must divide z + i or z− i, so π cannot
be an integer. Otherwise, π would have to divide the imaginary part of z ± i which
is ±1. Now if π | x, say, then by conjugating we deduce π | x and π 6= π (because no
prime ramifies in Z[i]). Therefore all prime factors of x split into pairs of conjugates,
and similarly for y. We then deduce that x ∼

∏m
k=1 πkπk where πk are non-integer

primes. If we denote a + bi =
∏m

k=1 πk we see that x ∼ (a + bi)(a + bi) = a2 + b2.
So x

a2+b2
is a unit. Since in our case the units are 1,−1, i,−i but we know that x is

a positive integer, we deduce that x = a2 + b2. Similarly y = c2 + d2.
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Example 9.3. (Moldova TST, 2004) Let n be a positive integer and let
0 < a < c ≤ d < b be positive integers such that n = a2 + b2 = c2 + d2. Show that
n is not a prime.

Solution. Assume n would be a prime. Then N(a + bi) is a prime integer so
a+bi is prime in Z[i], and similarly a−bi is prime. Thus (a+bi)(a−bi) is the prime
factorization of n in Z[i]. Analogously, (c + di)(c − di) is the prime factorization
of n in Z[i]. Since the factorization is unique, we conclude that a + bi ≡ c + di or
a + bi ≡ c − di. Therefore a + bi = ±(c ± di) or a + bi = ±i(c ± di). We will then
get a = ±c, b = ±d or a = ±d, b = ±c. Since the numbers are positive, we have
a = c, b = d or a = d, b = c, which contradicts the statement of the problem.

Example 9.4. Let p be a prime number such that
(
−2
p

)
= 1. Show that there

exist integers x, y such that p = x2 + 2y2.

Solution. By theorem 6.2 Z[
√
−2] contains a prime x+

√
−2y of norm p. Then

N(x +
√
−2y) = p means x2 + 2y2 = p, as desired.

Example 9.5. Let (Fn)n∈N be the Fibonacci sequence: F1 = 1, F2 = 1, Fn+2 =
Fn+1 + Fn. Prove that for every m there exists a number in the sequence divisible
by m.

Solution. Let u = 1+
√

5
2 . By Binet’s formula,

Fn =
(1+

√
5

2 )n − (1−
√

5
2 )n

√
5

=
un − (− 1

u)n

√
5

.

To avoid sign matters, assume that n = 2k is even. Then Fn = un− 1
un√
5

= u2n−1√
5un .

In the UFD Z[u], u is a unit. In order to have m | Fn in Z[u] it suffices to have
m | u2n−1√

5
i.e. m

√
5 | u2n − 1. Now as u is a unit, it is coprime to m

√
5 so theorem

7.4. tells that if φ(m
√

5) | 2n then m
√

5 | u2n − 1. Picking such an m, we conclude
that m | Fn in Z[u] hence Fn

m ∈ Z[u]. From the other side, Fn
m ∈ Q. Therefore

Fn
m ∈ Q

⋂
Z[u] = Z, as desired.

Remark. we have used here the fact that for integers a, b, a | b in Z if and only
if a | b in R where R is some quadratic ring. This is true because of the equality
R

⋂
Q = Z. Indeed, if u+vε ∈ Q for integer u, v then as ε is not rational we conclude

v = 0 so u + vε = u ∈ Z.

Example 9.6. (Sankt-Petersburg 239 High-School Olympiad) Consider
(Fn)n∈N be the Fibonacci sequence. Show that if 239 | Fn, then n is even.
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Solution. Assume that n is odd. Then Fn = un+ 1
un√
5

= u2n+1√
5

(we keep the
notations of the previous example). We thus conclude that 239 | u2n +1 in Z[u]. As(

5
239

)
=

(
239
5

)
= 1, the prime 239 splits in Z[u]. Let π be a prime divisor of 239, of

norm 239. Set z = un, then z is a unit so is coprime to π, hence Fermat’s theorem
tells that z238 ≡ 1 (mod π). But the condition 239 | u2n + 1 implies z2 ≡ −1 (mod
π) so z238 = (z2)119 ≡ (−1)119 = −1 (mod π). Hence we get 1 ≡ −1 (mod π), a
contradiction.

Example 9.7. (IMO Shortlist, 2004) Let m = 4k2−5. For a, b ∈ Z consider
the sequence (xn)n∈N defined by x0 = a, x1 = b, xn+2 = xn+1 + xn. Show that one
can choose a, b in such a way that all terms of the sequence are coprime to m.

Solution. Keeping the notations of the previous problems, let’s work in Z[u].
Let p1, p2, . . . , pn be all the distinct primes not dividing m. We see that 5 is a square
modulo pi hence pi splits into primes πi and πi. We need to ensure that none of the
terms of the sequence is divisible by any of the πi (and hence by any of the pi).

Note that (un) satisfies the recurrence, therefore if a ≡ 1 (mod πi) and b ≡ u
(mod πi) then we will have xn ≡ un (mod πi) and since un is a unit, we will have
xn not divisible by πi, as desired. Now, from what we have seen in the proof of
theorem 6.2., every member of the ring is congruent to some integer modulo πi, if
N(πi) is a prime number (and it is). Therefore one can choose integers ki such that
ki ≡ u (mod πi). By the Chinese Remainder Theorem (in Z), we can find an integer
b such that b ≡ ki (mod pi). This implies b ≡ u (mod πi) and so xn ≡ un (mod πi),
and we are done.

Example 9.8. (Mathematical Reflections, 2007) Solve in integers the
equation x3 − y2 = 2.

Solution. The equation can be rewritten as x3 = (y +
√
−2)(y −

√
−2). The

numbers y +
√
−2 and y−

√
−2 are coprime in Z[

√
−2]. Indeed, if π | y +

√
−2 and

π | y −
√
−2 for π prime then π | (y −

√
−2) − (y +

√
−2) = −2

√
−2 = (

√
−2)3 so

π =
√
−2. Then

√
−2 | y meaning that y is even and as x3 = y2 + 2, x must be

even, too. But for x, y even, x3 − y2 is divisible by 4 while 2 is not. Contradiction.
Since y +

√
−2, y−

√
−2 are coprime and their product is x3, each of them must

be associated to a cube. In Z[
√
−2] the only units are 1 and −1 which are cubes

themselves, so y+
√
−2, y−

√
−2 must be cubes in Z[

√
−2]. If y+

√
−2 = (a+b

√
−2)3

we get y +
√
−2 = a3 − 6ab2 + (3a2b− 2b3)

√
−2 so 3a2b− 2b3 = 1. As b | 3a2b− 2b3

one deduces b | 1 so b = ±1. For b = 1 we get 3a2 − 2 = 1 so a = ±1 which lead
to the solutions x = 3, y = 5 and x = 3, y = −5. For b = 1 we get 2 − 3a2 = 1 so
a2 = −1, impossible.
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10 Conclusion

As you see, working in quadratic rings may often be invaluably helpful for
understanding deep number-theoretical facts about primes and solving interesting
mathematical problems. And this was obtained by constructing a theory of divisibil-
ity just for quadratic rings, whereas one can add to Z roots of any polynomial, and
even more than one root! It turns out that divisibility theories can be constructed
for these rings too, even if the prime decomposition is not unique. This makes the
task much more difficult, but also much more fun. I myself find the idea of taming
divisibility in algebraic extensions so marvelous, that for me, number theory is the
most beautiful part of mathematics (as of now). And I hope you have felt something
similar. If you did, and if you want to learn something more, I encourage you to
seek and find new sources. But keep in mind that number theory is, in general, a
very hard subject, using a lot of other theories for its purposes. Before going into
deeper number theory, you should first learn linear algebra and modern algebra. If
any of you is interested, send me an e-mail and I can send you an electronic copy of
a good book about these subjects. Only after swallowing these two concepts, you
should be prepared to go deeper into number theory (at the college level). Again,
I can recommend you some books at that level, but you should be well-prepared.
Good luck, and I hope these notes were useful or at least interesting to you.
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