Zhao Chen “Pre-Algebra”

Purpose: A review of some prerequisite information for taking a course on abstract algebra. Most of this
will be reviewed during the first lecture, but it is still recommended that you try to work through it and
understand it before class.

Sets

Because we are not taking a class on set theory, we will not go through a rigorous treatment of what
a set is. Instead, we rely on our intuition here. What we mean by a set is just a “collection of things.”
A set is just a basket, and the elements of the set are just the things in the basket. So, we can define a
set of integers, or a set of cats, or even a set of sets. Sets are written with curly brackets {, so we can
represent the set of integers between 0 and 5 in writing by {1,2,3,4}. As a more complicated example,
the set whose elements are the sets {1,2,3}, {dog, cat, horse}, and {&, *,!} can be written as

{{1,2,3}, {dog, cat, horse}, {&, % 1}}

A set is completely defined by its elements, so the sets {1,2,3} and {2,1,3} are the same, and we write
{1,2,3} = {2,1,3}. Similarly, {1,1,2,3} = {1,2,3}. A special set is the null set, which is the set with
nothing in it. The null set is represented by the symbol @&. Note that @ # {@}; the left is the null set,
and the right is the set containing the null set.

In general, we will denote a set by a normal capital letter (although sometimes different symbols might be
used). So, if we write A = {1,2,3}, and then later on we write A, we are referring to the set consisting
of the elements 1, 2, and 3. Some special and often used sets are given standard symbols, and are listed here:

R - the set of real numbers.

7. - the set of integers.

C - the set of complex numbers.
Q - the set of rational numbers.
N - the set of natural numbers.

We can refer to specific elements of a set by the symbol €. So, if A ={1,2,3}, then we can say 2 € A or
1 € A. We can also say that 5 ¢ A or dog ¢ A. So, we can say, for example, that 7 € R and m € C, but

T ¢ Q.

Before we move on, it’s important to introduce some new symbols that we will be frequently using. The
symbol V means “for all” and the symbol 3 means “there exists.” Also, the symbol ! in some contexts
means “unique” (you may be used to ! denoting a factorial). Hence, the statement “Vax € A, Jy € B s.t.
xr = y” can be read as “for every element x in the set A, there exists an element y in set B such that z
and y are equal.” Two sets A, B for which this statement is true are A = {1,2,4} and B = {1,2,4}. Two
sets A, B for which this statement is not true are A = {1,2,4,5} and B = {&,1,2,4} (can you see why?).
Note that the words “such that” are often shortened in mathematical writing to s.t..

Now, we can continue with our development of set theoretical language. A set A is a subset of the
set B if Vo € A, € B. When this happens, we write A C B. Hence, {1,2,3} C {1,2,3,4}. By default,
@ C A for all sets A. This is because the statement above that defines what a subset is holds true, as
there are no elements in A in order to test against the condition. This is known as a statement that is
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vacuously true. Another vacuously true statement would be “All unicorns are pink,” as there doesn’t exist
any unicorn with which to test this statement (yes, I know, very sad).

Hence, we can say that
NcZcQcRcC

Often we will use the symbol C, to denote a set that is a subset of another set but is not equal to that
other set. Note that two sets are equal if and only if each set is a subset of the other set.

As a final term for this section, if A C B, we denote A° or A — B as the set of elements that are in
B but not in A.

Exercise 1: Consider the following sets:

A =the set of all cats.

B =the set of all animals.

C =the set of all animals with four legs.

D=g

E =the set of all black cats and the set of all dogs.
Which one of these sets are subsets of the others?

Intersections and Unions of Sets

Two operations we can perform between different sets are intersections and unions. We define the in-
tersection of A and B, denoted A N B, as the following: x € AN B if and only if x € A and x € B. We
define the union of A and B, denoted A U B, as the following: * € AU B if and only if x € A or z € B.
Hence, if A =1{1,2,3} and B = {2,3,4}, then AN B ={2,3} and AU B = {1,2,3,4}. If two sets have no
elements in common, then their intersection is the null set.

Two standard results in set theory are the De Morgan Laws, which tell us what happens when we take the
complement of an intersection or a union. Namely,

De Morgan Laws

Given n sets Ay, ..., A,, we have that
(AU UA,) =AIN...NAS

and

(A1 N .. NA) = ASU...UAS

Proof: Suppose x € (A4;U...UA,)¢. This means that x ¢ A;U...UA,, and hence z is not in any of the sets
Ay, ..., A, We conclude that € AS for ¢ = 1,...,n, and hence z € A{N...N A¢. Now, we have just shown
that (A3 U...UA,)* C AiN...N AS. To show that these two sets are equal, we must prove the opposite
inclusion, or that AN ...NAS C (A;U...UA,)° Hence, assume that x € A{N...N AS. This implies
that « is not in any of the sets Ay, ..., A,. Therefore, x ¢ A;U...UA,, and therefore x € (A;U...UA,)°,
and we have proven the first De Morgan Law. The second De Morgan Law follows by similar reasoning
(see if you can do this proof!). ]
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Make sure you can follow this proof, and understand how every statement logically is true. Proofwriting
is essentially being able to put down a logical sequence of ideas that leads to a desired conclusion. It takes
practice to become proficient at writing proofs, and this class will give you lots of practice. Note that I
used the fact that to prove A = B, we can just as well prove that A C B and B C A.

The two set-theoretical identities we just proved gives us some insight into how to prove certain types
of statements. For example, say we have two statements, S; and S;. If we want to prove that both S
and S, are true, then we essentially want to show that S; N Sy is true. If we want to prove that S; N Sy
is not true, then by the just proven result, we have to prove that S{ U SS is true; that is, that either S is
not true or Sy is not true. This is pretty intuitive if you think about it, but we’ve now found and proven
a method to “negate” statements, or change a statement into its complement. We will find use for logical
negation in many proofs.

Maps Between Sets

In high school, you learned about functions, which were entities that took in a number and produced
one (and only one) number. A map between sets is very similar. For notation, we denote a map f between
sets A and B as f : A — B. This function f takes an element of A and assigns it one (and only one)
element of B. For any a € A, we denote the element of B that f assigns a to as f(a). Hence, f is fully
defined if we know for any a € A, what the value of f(a) is. As an example, consider A = {1,2,3} and
B ={2,3,4}, and the map f : A — B such that f(z) = x — 1 (which means that f(3) = 2 and so forth).
Note that if we said that f(1) = 8, this would not be well defined, since 8 ¢ B.

For a map f : A — B, we call A the domain of f, and B the codomain. We call the image of f, of-
ten denoted as Im(f) or f(A), as the subset By C B such that Ja € A such that f(a) € By. In simpler
terms, the image of f are all the elements of B that are “hit” by f.

Given any C C B, we define the inverse image of C' as the subset f~1(C) C A such that given
r € f71C), f(x) € C. For example, given g : Z — Z such that g(x) = = + 1, then if we denote A
as all even integers, f~!(A) is precisely the set of all odd integers. If f(A) = B, then we say that f is
surjective. If f(a) = f(b) implies that a = b for all a,b € A, then we say that f is injective (which is a
fancier word for “one-to-one”). In simpler terms, a map is injective if everything in the function’s image
is only hit once. If a map is both injective and surjective, then it is bijective. The map g defined above is
bijective. The map h : Z — Z such that h(x) = 3x is injective but not surjective. Saying that a map is
bijective is the same as saying that there exists an inverse for that function.

Proofwriting and Proof Strategies

For this final section, we will go over some general proofwriting strategies that you should know for
this course. A proof is just, simply, a sequence of statements that are all logically sound, which leads to
some desired result. As beginning proofwriters, it is often easier to organize your proofs by going back to
the definitions. For example, to prove that A C B, we recall that A C B means that Vx € A,z € B and
then prove that defining statement.
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First, a short blurb about what some things you may be asked to prove actually mean. If we want
to prove a statement “A if B,” this means that we assume B and then show that A is true. If we want
to prove a statement “A only if B” then this means that we should assume A is true, and show that B is
true. The statements “A if B” and “A only if B” are called converses.

Now, there are a couple of mathematical methods that sometimes give a nice way to do proofs. The
three that we will be covering in this section are proof by induction, proof by contrapositive, and proof by
contradiction.

First, induction. Suppose that we had a statement A that we wish to show is true for all the posi-
tive integers (i.e. the natural numbers). A lot of statements we hope to be true come in this flavor.
Consider the following strategy.

(1) Show that A is true for the integer 1.
(2) Show that if A is true for the integer i, then A is also true for the integer ¢ + 1.

These two statements form the proof strategy known as induction. The first half of (2), where we as-
sume that A is true for the integer i, is known as the inductive hypothesis. Now, the reason we are done
with the proof is that because we know that A is true for 1, it must be true for 2 as well because of (2) above.
Similarly, it must be true for 3, and 4, and so on and so forth. Hence, A must be true for all positive integers.

Example: Suppose that there are n > 1 people in a room, and every person shakes hands with every

other person. Show that there are "22_ " handshakes.

Proof: This is obvious for n = 2, which is our base case (in this case, we only care about integers
greater than 1, so we start at n = 2), since there would be 1 handshake in this case. Now, go to the case
where we have n = k people. By inductive hypotheesis, there are (k* — k)/2 handshakes. For the case
n =k + 1, we will have precisely £ more handshakes, since the k£ + 1st person must shake hands with the
k people already present. Hence, the number of handshakes is then

k* —k R +k P +2k+1-k—-1 (k+12—(k+1)

k
2 - 2 2 2

and we are done by induction. O]

The second method that we will discuss is contrapositive. Suppose that we would like to prove the
statement “if A, then B.” By the contrapositive method, we would instead prove the statement “if not B,
then not A.” It turns out that these two statements are equivalent. I will not prove their logical equivalence
here (you can do so easily with some well-drawn diagrams), but will demonstrate the use of this method.

Example: If n is a positive integer such that n mod 4 is 2 or 3, then n is not a perfect square (n
mod k is precisely the integer remainder when we divide n by k).

Proof: We go by contrapositive. We therefore prove the statement: If n is a perfect square, then n
mod 4 is 0 or 1. This is fairly easy to prove. For n even, we know that m = \/n must be even,

and hence m = 2k = n = 4k*> = 0 mod 4. For n odd, we know that m must be odd, and hence

4
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m=2k+1=n=4k>+4k +1 =1 mod 4. Hence, we are done by contrapositive. Il

The last method that is used a lot by mathematicians is proof by contradiction. Suppose we would
like to prove the statement “if A, then B.” If we would like to prove this by contradiction, then we first
assume A is true but B is false, and show that this set of conditions leads to something silly being true.
This is best shown by example, and we offer a classic one:

Example: Show that /2 is not rational.

Proof: Assume that /2 is rational. Then, we write v/2 = p/q, where p and ¢ are integers and we as-
sume that p and ¢ have no common factors (in other words, we reduce the fraction p/q to its most simple
form, which is always possible). We then see that 2¢*> = p?, which shows us that p? is divisible by 2.
However, if p? is divisible by 2, then p is divisible by 2 (why?). We thus write p = 2k, and we have
2¢% = 4k? = ¢* = 2k?. By the same logic, ¢? is divisible by 2 and hence ¢ is divisible by 2. However, we've
shown that both p and ¢ are divisible by 2, contradicting our previous assumption that p and ¢ had no
common factors. [

Read this proof carefully and make sure you understand where the contradiction came in. Essentially,
if v/2 were rational, we could never express its fraction in lowest reduced form, which makes no sense
considering the properties of rational numbers.

These are some of the basic concepts you should be comfortable with as we go through this course.
Don’t sweat if some (or a lot) of this seems unfamiliar or difficult at the moment - mathematics takes
experience, and once you get used to these ideas they will feel much more natural. Enjoy the class!



