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Abstract. A finite recurrent system over the power set of the natural numbers of
dimension n is a pair composed of n n-ary functions over the power set of the natu-
ral numbers and an n-tuple of singleton sets of natural numbers. Every function is
applied to the components of the tuple and computes a set of natural numbers, that
might also be empty. The results are composed into another tuple, and the process is
started anew. Thus, a finite recurrent system defines an infinite sequence of n-tuples
containing sets of natural numbers. The last component of a generated n-tuple is
called the output of one step, and the union of all outputs is the set defined by the
finite recurrent system. We study the membership problem for special finite recur-
rent systems, whose functions are built from the set operations union, intersection,
complementation and the arithmetic operations addition and multiplication. Sum
and product of two sets of natural numbers are defined elementwise. We will show
undecidability results as well as completeness results for complexity classes like NP
and PSPACE.

1. Introduction. Sets of natural numbers can be represented by a variety of mathematical
objects. Finite sets or co-finite sets, the complements of finite sets, can be represented by
words over {0,1}, i.e., by natural numbers, with a canonical interpretation. However,
large sets require large numbers in this model. If these sets possess regularities a more
efficient representation would be desirable. In case of sets that are neither finite nor co-
finite such a simple representation does not work at all. Stockmeyer and Meyer defined
integer expressions, which are expressions built from naturals, the set operations union,
intersection and complementation (relative to the set of naturals) and an addition operation
[10]. Wagner studied an hierarchical model of a similar flavour that can nowadays be
understood as an arithmetic circuit [14], [15]. Such concise representations however make
it difficult to derive information about the set from its representation. The membership
problem for natural numbers in general can be understood as the problem, given a set M of
natural numbers represented in a certain model and a number b, to decide whether b belongs
to set M. The complexity of the membership problem heavily depends on the representation
and can generally be described by the formula: the more concise the representation the
more complex the membership problem.

McKenzie and Wagner recently studied a large number of membership problems [6].
Given an arithmetic circuit over the power set of the natural numbers involving the standard
set operations union, intersection, complementation and the arithmetic operations addition
and multiplication (both operations are defined on sets, and sum and product of two sets are
defined elementwise) and a natural number b, does the circuit represent a set that contains
b? It was shown that restricting the set of possible operations as well as restricting circuits
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to formulas cover a wide range of complexity classes. Here, a formula is an arithmetic
circuit where every vertex has at most one successor. Their work extends past works by
Stockmeyer and Meyer [10], Wagner [14] and Yang [16].

The standard approach to circuits is via functions, and circuits represent these func-
tions efficiently. In this sense, all problems above concern such circuits but applied only to
fixed inputs. Circuits of various types have been studied deeply, and they are an interesting
model to obtain lower bounds complexity results. A lot of information on this subject can
be found in the book by Vollmer [13]. In this paper we combine ideas that have been
sketched above to obtain set representations by special recurrent system.

Recurrences are well-known. The sequence 1,1, 2,3, 5,8, ... of numbers—the Fibonacci
numbers—is generated by the simple formula F'(n+2) =get F(n+1)+F(n) where F(0) =qef
F(1) =ger 1. Numerical simulations of one particle or multi-particle systems in physics use
systems of recurrences instead of differential equations. Recurrences play an important role
in mathematics, computer and other sciences. Though recurrences normally involve only
basic arithmetic operations such as addition and multiplication over the natural or the real
numbers, operations do not have to be limited to this small collection. A recurrent system
over the power set of the natural numbers of dimension n is a pair consisting of a set of
n n-ary functions fy,..., f,, over the power set of the natural numbers and an n-tuple of
naturals. Starting from singleton sets defined by the n-tuple the result of function f; in
one step is used as the i-th input in the next step (the precise definition is provided in
Section 3). So, a recurrent system generates iteratively an infinite sequence of tuples of
sets of natural numbers. The last component of each tuple is the output of the system in
the corresponding evaluation step. Then, the union of all outputs defines a set that may
be finite or infinite. The existential membership problem M., for recurrent systems then
asks whether there is an evaluation step such that the corresponding output contains a
given number, and the exact membership problem M,,, asks whether a given number is
contained in the result of a specified evaluation step. We require that functions can be
represented by arithmetic circuits.

A recurrent system in the sense defined here can be regarded equal to a number of
other models. For instance, each vertex of a sink-free directed graph is attached a function
whose arity corresponds to the number of incoming arcs, and in each step the value of a
vertex is the result of the function applied to the values of the last step of its preceding
vertices. Each vertex then has a kind of memory. We can also require that only some
vertices are memory vertices, but then there must be further restrictions on the structure
of the underlying graph. The idea of memory elements can be found in the field of Boolean
circuits describing processes.

We examine membership problems for recurrent systems for a restricted set of functions
over the power set of the natural numbers. Equal to the work of McKenzie and Wagner,
our functions are built from the three known set operations and addition and multipli-
cation. The general problems in this restricted sense are denoted by M, (U,N, ™, ®, ®)
and My, (U,N,7,®,®). Reducing the set of allowed operations leads to problems like
M, (U, @), where functions are built only from U and &, M, (6, ®) or My, (U). We study
the complexity of such membership problems with respect to the set of allowed operations.
We will see that such problems are complete for a number of well-known complexity classes
such as NP, PSPACE and RE. However, undecidability of some of our problems does not
answer an open question from [6]. The authors expected that the general exact membership
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problem My, (U,N,”,®,®) was undecidable. Some evidence for undecidability was given
by showing that a decision algorithm would prove or disprove Goldbach’s conjecture about
sums of primes.

The paper is composed as follows. In Section 3, finite recurrent systems are introduced.
Section 4 presents the undecidability proofs of M, (U, N, ®, ®) and M, (7, @, ®). This proof
is achieved by reducing DIOPHANTINE, the problem about the satisfiability of Diophantine
equations, which is known to be undecidable [5], to both problems. The following sections
classify a range of membership problems for recurrent systems. For example, M, (U) is NL-
complete (Section 5), M¢z(N) and Mg, (N, ®) are NP-complete (Section 7), and M., (U, N),
M, (U, ®) and M, (U, ®) are PSPACE-complete (Section 8).

2. Preliminaries. We fix the alphabet ¥ =g¢r {0,1}. The set of all words over ¥ is
denoted by ¥*. All inputs are assumed to be given as words over 3. By L, NL, P, NP
and PSPACE we denote the known complexity classes; for an exact definition and further
information we refer to the book by Papadimitriou in that subject [8]. If the computation
mode is not mentioned we mean deterministic computations. Nondeterminism is always
indicated. The class FL contains all functions that can be computed deterministically by
a Turing machine with output tape using logarithmic working space. By RE = X1, Ag, 35
and Il we denote classes of the arithmetical hierarchy, where Y1 is the set of recursively
enumerable sets and Ag =qer X2 NIy [4], [7]. A set A is log-space reducible to some set B,
A <L B, if there is f € FL such that, for all z € ¥*, € A < f(z) € B. Since this is
the only reducibility that we employ, we will shortly say that A reduces to B. For some
complexity class C, set A is <L -complete for C, if A € C and B <L A for all sets B € C.
We will shortly say that A is C-complete.

Numbers. The set of the natural numbers is denoted by N and certainly contains 0. If
we talk of numbers, we always mean natural numbers. Numbers are represented in binary
form. The power set of N is the set of all subsets of N. For natural numbers a,b, a < b,
[a,b] =ger {a,a+1,...,b}. For every number n > 2, there are n prime numbers smaller
than n?. Two numbers are relatively prime, if their greatest common devisor is 1.

Theorem 1. (Chinese Remainder Theorem)
Let by, ..., b, be pairwise relatively prime numbers, and let ny,ny € N. Let b =ger by -. . .- bg.
Then, ny = ng (mod b) if and only if ny = ng (mod b;) for every i € [1,k].

For set A and two binary operations ¢ and o over A, the triple (A,©,0) is a semiring
if (A,¢) and (A,o0) are commutative monoids and the two distributive laws hold. For +
and - denoting addition and multiplication over N, (N, +,-) is a semiring. By SR(b) we
denote the semiring ([0, b+1], sumy, prod,) where the binary operations sum;, and prod, are
defined as follows. Let ai,ao € N.

_ o +az ,ifap+ax <b
sump (a1, az) =det {b+1 otherwise

Similarly for prod,. We can define matrices over SR(b), and matrix multiplication is well-
defined. We define relation ~. For £ > 1 and a1,...,ax,d},...,a), € N let (ai,...,a;) =~
({a}},...,{a,}) if and only if a; = a] for all 7 € [1,k]. The reader may assume symmetry.

Graphs. A simple, finite, directed graph is a pair G = (V, A) where V is a finite set and A C
V' x V. For two vertices u,v € V there is a u,v-path in G, if there is a sequence (z1,...,z)
such that 1 = u, zxy = v and (x;,2,11) € A for all i € [1,k—1]. The graph accessibility
problem for directed graphs, denoted by diGAP, is the set of all triples (G, u,v) where G is a



Figure 1. Circuit representation of the superposition of functions.

directed graph, u and v are vertices of G and there is a u, v-path in G. The problem diGAP
is NL-complete [9]. G is acyclic, if there is no sequence P = (zy,...,z,) for n the number
of vertices of G such that P is an xgy,x,-path in G. The problem ACYC is the set of
all directed acyclic graphs. Since diGAP restricted even to acyclic graphs is NL-complete,
ACYC is NL-complete. For vertices v and v of G, u is a predecessor of v, if (u,v) € A. A
vertex that is not the predecessor of any vertex is a sink.

Circuits. Let O be a set of commutative operations over set M. C = (G, g., ) is an n-ary
arithmetic O-circuit over M for n > 0, if G = (V, A) is a (simple, finite) acyclic graph,
gc € V is a specified vertex of G, the output vertez, and o : V' — O U [1,n] such that «
establishes a 1-1 correspondence between n vertices without in-coming arcs and [1,n] and
all other vertices are assigned operations from O whose arity correspond with the number of
in-coming arcs of the vertices. Vertices assigned a number are called the input vertices of C.
The arithmetic O-circuit C over M represents a function fo over M in the following way.
Let (aq,...,a,) € M™. The value of the input vertex assigned number i is a;, the value of
vertex u where u is assigned an operation from O is the result of «(u) applied to the values
of the predecessors of u. Then, fc(ay,...,a,) is the value of the output vertex go. Let
fc be an n-ary function represented by circuit C, and let fe,, ..., fc, be n’-ary functions
represented by circuits Cy,...,C,. A circuit representation of function f(xy,..., T, ) =qef
fe(fo, (x1, .. xn), ..., fo,(x1, ..., xy)) is obtained from C, Cy, . .., C,, by indentifying the
input vertices of C1,...,C, assigned the same numbers and identifying the vertices of C'
assigned numbers with the output vertex of the corresponding circuit C;. Figure 1 gives
a schematic drawing. Input vertices are represented by squares containing the assigned
numbers. The example represents f(x) =ger fo(fo, (X), fo, (X)) for x =qef (x1, 22, 3).

3. Recurrent systems. A recurrence is a pair composed of a function and a sequence of
elements. From recurrences one can generate infinite sequences by applying the function
to certain of already generated elements. Usual recurrences are defined over the set of the
real or complex numbers and involve only basic arithmetical operations like addition and
multiplication. We extend this notion to recurrent systems over power sets of numbers.

Definition 1. Let n > 1. A finite recurrent system over the power set of the natural
numbers of dimension n is a pair S = (F, A) where F =qet (f1,..., [n) for fi,..., fn n-ary
functions over the power set of N and A € N*. The dimension of S is denoted by dim S.

Let S = (F, A) be a finite recurrent system over the power set of the natural numbers
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where F =gef (f1,. .., fn) and A = (aq,...,a,). We define for every ¢t € N:

fl(O) =def {az} and fi(t—{-l) =def fi(fl(t)7 - ,fn(t)), 1€ [l,n]
f(t) —def (fl(t)a s 7fn(t)) :

Let S(t) =der fn(t). Note that f;(t) is rather a symbolic denotation of the result of f; in
the t-th evaluation step. We can say that a finite recurrent system over the power set of
the natural numbers defines or represents an infinite sequence of sets of natural numbers.
By [S] we denote the union of these sets, i.e., [S] =qer ;> S(t). We are interested in two
problems that arise immediately from our definitions. One can ask whether a number b is
generated in step ¢ or whether b is generated in some step at all.

Several authors studied membership problems of sets of natural numbers that can
be built from singleton sets of natural numbers by applying the set operations union,
intersection, complementation and the two arithmetic set operations addition and multi-
plication, denoted by @ and ® [10], [14], [16], [6]. Addition and multiplication on sets
are defined elementwise. Let A,B C N. Then, A® B =q¢ {r+s :7 € A and s € B}
and A® B =qe¢ {r-s:7 € Aand s € B}. Let O C {UN,”,®,®}. An n-ary O-
function f = f(z1,...,zy,) is a function over the variables zi,...,x, defined by using
only operations from O. In this paper we will consider only finite recurrent systems on
{U,N, 7, ®, ®}-functions.

Definition 2. Let O C {U,N,7,®,®}. A finite recurrent O-system S = (F, A) over
the power set of the natural numbers is a finite recurrent system over the power set of the
natural numbers where every function in F is an O-function.

Since we will only deal with finite recurrent {U,N, ", ®, ®}-systems over the power
set of the natural numbers we will henceforth call them recurrent systems for short. (In
Section 4, recurrent system may also mean another type of a finite recurrent system, but
this will be restricted to that section and always be clear.) Every recurrent system S defines
a possibly infinite set [S] of natural numbers. The ezistential membership problem M., for
recurrent systems asks whether a given number is contained in the defined set, and the
exact membership problem My, asks whether a given number is contained in the result of a
specified evaluation step. We want to study the complexities of these membership problems
with respect to the involved functions. Let O C {U,N,~, @, ®}.

Mez(O) =qer {(S,b) : S a recurrent O-system and b € [S]}
My (O) =qger {(S,t,b) : S a recurrent O-system and b € S(t)}

Instead of writing M, ({U,N, ®}) we will write M, (U, N, ®) for short; similarly for the
other problems. The complexities of our problems strongly depend on the input repre-
sentation. We assume that natural numbers are given in binary form and functions are
represented by arithmetic circuits with appropriate labels. For circuits we require any en-
coding that permits adjacency tests of two vertices and detection of labels of vertices in
deterministic logarithmic space. (A label list and neighbourhood representation by ad-
jacency lists can be assumed.) So, the size of the representation of a circuit is of order
the number of its vertices and edges. It can be verified in nondeterministic logarithmic
space whether an input represents an O-function for O C {U,N,~,®,®}. Using our no-
tations McKenzie and Wagner studied the complexity of the question for given recurrent
O-system S and number b > 0 whether (S,1,b) € My, (O) [6]. Their input representa-
tion additionally required a topological ordering of the vertices of the circuits, but this is
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only of importance for problems that are contained in NL. We will denote the problems
investigated by McKenzie and Wagner by MC(0O). It follows for every O C {U,N,~,®,®}
that My, (O) is decidable if and only if MC(O) is decidable. The only problems that have
not yet been proved decidable are MC(U,N, ™, ®, ®) and MC(~,®,®), and they are not
believed to be so (see also [6]).

The results that we will present in the following sections can be classified as decidabil-
ity and undecidability results. We will show that in case of decidability of M., (O) for some
O C{uU,n,7,®,®} there is an easily computable function f such that (S,b) € M., (O) for
S a recurrent O-system and b € N if and only if (S,¢,b) € My, (O) for some ¢t < f(S,b). We
will show M., (U,N, &, ®) and M, (7, ®, ®) to be undecidable. For both problems there
is no computable function that bounds number ¢. Otherwise, M., (U,N, ®,®) would be
decidable due to the decidability of My, (U,N,®,®). It is still an open question whether
My (7, ®, ®) is decidable. The following statements are easy observations that link decid-
ability of membership problems for recurrent systems and circuits.

Fact 2. i. My, (U,N, 7, ®,®) is either decidable or not recursively enumerable.

ii. Mz (U,N, 7, @, ®) is recursively enumerable if and only if MC(U,N, ™, ®,®) is decid-
able.

iii. Mez (7, @, ®) is recursively enumerable if and only if MC(~, ®, ®) is decidable.

GlaBler showed that MC(U, N, ™, ®, ®) is contained in Ay = 35 NIy, where ¥y and Ty
are the complexity classes forming the second level of the arithmetic hierarchy [1]. This
entails the following theorem.

Theorem 3. My, (U,N, 7, D, ®) € Ay and M, (U,N, 7, B, ®) € Xs.

4. Undecidability of membership problems. We begin our study of the computational
complexity of membership problems for recurrent systems by showing that the most general
problem that we consider is hard. In fact, we will show that M., (U,N, ™, ®,®) is not
decidable. We also expect this problem to be not even contained in RE, which we are
not able to prove at the moment. However, there are some hints that lead to such an
assumption some of which will be given in the conclusions section of this article.

Besides this hardness result we are also able to show a similar result for two other
membership problems. It turns out that M, (U, N, ®, ®) and M., (~,®, ®) are undeciable,
too. In case of the latter problem undecidability is already expected for the corresponding
problem MC(™, @, ®), but has not yet been proved. The former problem, however, in its
non-recurrent form is contained in NEXP, and undecidability of M, (U, N, ®, ®), therefore,
is somehow surprising. Undecidability relies on the fact that we can express disjointness of
two sets using restricted sets of operations, and then, we are able to decrement numbers.

We introduce a new problem M., (gr, ®, ®,1), and we will prove it to be undecidable.
This proof heavily relies on the ability to enumerate all k-tuples over N for k£ any constant.
Using this result we can reduce DIOPHANTINE to Mg, (gr, ®,®,1). Finally, we will show
that M. (gr, ®, ®, 1) reduces to both problems M, (U,N, ®,®) and M, (7, D, ®).

The function 1 merely represents the constant set {1}. Using this denotation, one
might expect confusions between the meanings 1 and {1}. But the two meanings will
always be distinguishable from each other. Let A, B C N. We define function gr, which
should be understood as greater than, as follows: if B C A @® N then gr(A, B) =g {0},
otherwise gr(A, B) =ger {1}. Of course, gr is more a predicate than an operation or a
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Enumeratey:

1 begin

2 n = -1;

3 bk = 0;

4 myp = 0; ;o my =0
5 n :=n + 1;

6 i = min{i € {1,...,k} :m; > 1} U{k +1};
7 by :=1; ...; bjo :=1;
8 mi_1 = bi_1;

9 bi1 =01 + 1;

10 m; = m; — 1;

11 goto 5

12 end.

Figure 2. An algorithm for enumeration of N¥.

function. It is obvious that {gr,®,®, 1}-functions always compute singleton sets, if they
are applied to singleton sets only. Problem M., (gr,®,®,1) is the set of all pairs (.5,b)
where S is a recurrent {gr, ®, ®, 1}-system, b € N and there is ¢ > 0 such that b € S(t).

Enumerating k-tuples. We first present an algorithm that enumerates all k-tuples over
N, £ > 1. The algorithm Enumeratej, given in pseudocode in Figure 2, works like an
iterated Cantor enumeration. Note that line 7 is short for a for-loop and can only be
carried out for ¢ > 3. Furthermore, variables my, by and my,1 are not initialized. Due to
readability we avoid additional conditional tests, but the reader is free to include them in
lines 8, 9 and 10. These variables are never used.

A phase of Enumeratey, is finished by reaching goto in line 11. The value of a variable
in some phase is its content at the end of that phase. The number of a phase is represented

by the counting variable n, and the start phase has number 0. A k-tuple m = (mq,...,my)
over N is generated in phase n if m contains the contents of the variables mq,...,m; in
phase n. In every phase the variables by, ..., b; are non-zero. We will show in the following

that every m € N* is generated in some phase. Consider the values of the variables of
Enumerates during the first few phases.

n 01234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24
1 44321432132 1 2 1143 2 13 2 1211
b3 12222333333 3 3 3 3 4 4 4 4 4 4 4 4 4 4
b 11222122233 3 3 3 3 12 2 2 33 3 3 3 3
by 11122112212 2 3 3 3 112 2 122 3 3 3
mg| 01000211100 0 O OO0 3 2 2 2 111111
me| 00100010021 1 0O 0O O 1O0O0 21100 0
m | 00010001001 0 2 1 0 O O0O1O0O0OT1TUO0 210

For every r € [1, k] we define an r-round to be an interval [ni,ng] for ny,ny € N, 0 < n; <
ng, such that m, = 0 in phase n;—1 and m, > 0 in phase n; and ns is the smallest number
such that my = --- = m, = 0 in phase ny. We call phase ny the beginning, phase no the
end of r-round [n1,ns]. For example, phase 4 is the end of a 1-round, 2-round and 3-round
of Enumerates. Phase 11 is the end of another 1-round, but not the end of a 2-round. Bold
numbers in our example above mark the ends of 1-rounds. We observe that, if m,; > 0
at the end of some r-round [ny,ns], than no+1 is the beginning of another r-round. For
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example, in phase 12 a new 1-round starts within the 2-round [9, 14]. Note that phase 5 is
not the beginning of neither a 1-round nor a 2-round. In general, if ¢ is the value of m, at
the beginning of an r-round, r > 1, then this r-round contains exactly ¢ (r—1)-rounds. We
first show that number ny always exists.

Lemma 4. Let ny > 0 fulfill the prerequisites of the beginning of an r-round for r € [1, k],

and let ¢ be the value of m, in phase nyi. Then [ny,ns] is an r-round where ny =get
l+r

ni+ (7)) =L

r
Proof: We show the claim by induction over r. If » = 1, then £ is the value of m; in
phase ny. Since lines 7-9 of Enumerate; are not carried out, it takes ¢ phases to reduce
the value of m; to 0. Hence, [nq,ns] is a l-round for ny =gef n1 + € = nq + (ZJ{I) — 1. Let
r > 1. The value of m, in phase n;—1 is 0. Hence, m; = --- = m,. = 0 in phase n;—1,
since the value of ¢ in phase ny is r+1. Furthermore, the values of by, ...,b._1 in phase n;
are 1. So, in phase n1+1 an (r—1)-round starts, and a new (r—1)-round starts hereafter if

m, is greater than 0 in phase ny+1. This is repreated ¢ times, so that we find no such that

V4 . V4 .
i+r—1 i1+r—1 {4+
ng—nlzl—i—g (7"—1>_1:E <7"—1>_1:<T>_1

=1 1=0

The set of k-rounds of Enumerate; partitions N \ {0}. We can define a canonical
ordering on the k-rounds where the 0-th k-round is phase 0 and the first k-round starts in
phase 1.

Proposition 5. The algorithm Enumerate; for k > 1 enumerates all k-tuples over N.

Proof: Let a = (ay,...,ar) be a k-tuple over N. Let s =ger a1 + -+ + ar. We will show
that a is generated during the s-th k-round of Enumeratey. If s = 0 then a = 0, and a is
generated in phase 0. At the beginning of the s-th k-round, it holds that by = mgp+1 = s+1,

by =---=by—y =1and m; =--- = my_1; = 0. At the beginning of the (s—ag)-th (k—1)-
round within the s-th k-round, it holds that m; = --- = mg_o =0, by = --- = by_9 = 1,
Mp_1=8—a, bp_1 =s—ap+1, m =ar and b = s+ 1. An iterated application of this
argumentation concludes the proof. n

Note that Enumerate; does not establish a bijection—it is rather the case that every
element of N¥ is generated infinitely often.

The description of a component. The overall goal of our reduction is to simulate
algorithm Enumeratey by an appropriate recurrent {gr, ®, ®, 1}-system. In this subsection,
we will define and describe a recurrent system that will generate one component of the
enumerated k-tuple. For convenience, we define five auxiliary functions. Let A, B C N.
Then, ueq(A, B) =qer gr(A, B) ® gr(B, A) and

no(A) =qef ueq(A,1) and 0 =gef no(1)
eq(A7 B) =def HO(HGQ(A, B)) and OI'(A, B) =def ueq(A ¥ B7 0) :

Note that ueq, no, eq, or can map to either 0 or 1. We define a recurrent {gr, &, ®, 1}-system.
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Let ]:M —def (fa;fb:fc:fh:fm> where x —def (a)ba Caham) and

fa(x) =der eq(h,m) @ no(fe(x))

fo(x) =det (far (x) @ b) @ or(no(fu (x)), fer (x))

fe(x) =def fer(x) @ eq(h,0)

F1(x) =det ueq(h, 1 ® (m @ no(fe(x))))

f"(x) =aet (m @ no(fu(x))) © (f'(x) @ ueq(h, m @ no(f(x))))

fm(X) =def far (x) @ f"(x)

fn(x) =det (for(x) @ ((f'(x) @ h) © (no(f'(x)) @ f"(x)))) ® (no(far (X)) @ fir (x)) -

Functions for, fy, fo will be precised later. We define fu(0) =qer 0 and for (t4+1) =gqef
far (F@); fo(t), fo(t), f'(t) and f"(t) are defined similarly. Let Sy; = (Far, Apr) be our
recurrent {gr,®,®, 1}-system where Ap; =ger (0,0,0,0,0). We will continue by proving
important properties of Sj;.
Lemma 6. For everyt >0

i. fo(1) S N® 1 implies f(t+1) CN @ 1,

ii. fa(t) C fm(t) ®N.
Proof: We prove the claims by induction over ¢. Let the claims be true for ¢t > 0. It
holds that f,(t+2) C fp(t+1) & N or f,(t+2) = 1. For the second claim, we assume
far(t+1) £ 0. If f/(t+1) = 0 then fr(t+1) = fo(t+1) @ f"(¢t+1). Let f'(t+1) = 1. Then
falt+1) = fut+1) @ fult). T fu(t) = O then fu(t+1) = f(t) = 0. Let fu(t) # 0.
If ueq(fn(t), fm(t)) = 1 then fr(t) C fi(t) ® N & 1 and fp(t+1) C fi(t+1) & N. If
uea(fa (), fon(t)) = 0 then fn(t+1) € {0, fu (t+1)} @ {1, fin (B)}- .

Lemma 7. Let 0 <t < t9.
i. Let fo(t1) = fo(t1) = 1 and fo(t1) = 0. If fo(t14+1) = 1 and fo(t1+1) = O then
fati+1) =1, fe(t14+1) =0, fo(t1+1) = fo(t1) and fn(t1+1) = fm(t1).
ii. If fo(t) =0 and fy (t) SN @1 for all t € [t1,t9] and fu(t1) = 1 then f,(t) = 0 for all
t € [t1,t2].

Proof: Consider the assumptions of the first claim. f,(¢1) = 1 implies f(t;—1) =
fm(t1=1), hence fr(t1) = f"(t1) = fm(t1=1). Since fu(t1) = fu(t1=1) or fu(tr) = f"(t),
it follows that f(t1) = fiu(t1) which results in f,(t14+1) = 1 and f,,((1+1) = fu(t1). The
remaining claims of i. follow trivially. For the second claim: f.(¢;) = 1 implies f,(t;) =0,
and fp,(t) =0 and f(t) C N@ 1 for all t € [ty,ts], which yields eq(fr,(f), fn(t)) =0. m

Lemma 8. Assume for all t > 0 that fu(t+1) = 1 implies f,(t) = 1, and fq (t) = 1 and
far (t+1) = 0 implies fo(t+1) = 1. Let tyg € N such that f,(tg) = 0 and f, (tg) = 1. Then,
there is some t1 > to such that f,(t1) = 1. Ifty is smallest possible and eq(fy(to), fm(to)) =
0 then eq(fa(to), (fm(t1) +1)) = 1.

Proof: Let k > 0 be the smallest value such that eq(fy(to), (fm(to) + {k})) = 1. The
existence of k is due to Lemma 6. We show the claim by induction over k. If £ = 0 then
fa(to+1) = 0 would imply fu(to+1) = 1 and f,(t9) = 1. Hence, t; =ger to + 1 fulfills
the claim. If k = 1 then f,(to+1) = 0, and fu (to+1) = 1 and fu(tp+1) = 0 due to our
assumptions. It follows that f'(to+1) = 0 and fr(to+1) = fin(to+1) = f"(to+1) = fin(to).
Now, eq(frn(to+1), fi(to+1)) = 1 and the existence of t; > ty such that f,(¢1) = 1 follows
by applying case k = 0. Furthermore, eq(fp,(to), (fm(t1) + 1)) = 1. Let k > 2. Then,
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fa(to+1) =0, fo(to+1) = 1 and fo(to+1) = 0. We conclude f'(to+1) = 1, fn(to+1) =
f"(to+1) = fi(to) + 1 and fr(to+1) = fr(to). It holds that the smallest number &’ such
that eq(fn(to), (fm(to) + {k'})) = 1 is one less than k, and we can conclude the proof by
applying the induction hypothesis. ]

Assembling components. This subsection aims to achieve a recurrent {gr,®,®,1}-
system that simulates the work of Enumeratey. Let S’](Vl[), ey S’](\f[) be k copies of system Sy,

defined in the last subsection. By f,gi), fg), cee f,(f), f;,i) we denote the functions of S](\?,
i € [1,k]. Consider the following definition.

N T 7 S AU A S A U 7 NN (N A CUNY AU A )

X =def (ala bl; C1, hl; my, ag, ..., bk: Ck, hk: mkax)'

Then, f,gi) (x) = falag, b;, ci, hi,m;) and similarly for f,fi),fc(i),f,si),fé?, i € [1,k]. Further-
more, let fa(X) =gef D fc(k) (x). Now, we can precise the definitions of fa(,l), fb(,z), fc(,l). For
every i € [1,k—1], let

féfi) (x) =aer £V (%) fb(,i) (X) =def fb(iﬂ)(x) fc(rl)(x) =def 01
and and

£ (x) =aer no(f (x)) £ (%) =aer fa(x) FED ) =aer £ (%)
Let Sk =gt (FE, AL) where A% =g (1,0,0,...,0). First observe that the functions of
F }_5 are well-defined. We want to show that for every a € N¥ there is some ¢ € N such that

a~ (fO(t),...,f®)(t)). We begin by showing some properties of S that are needed to
apply the results obtained in the last subsection.

Lemma 9. f,gi)(l) =0, fc(i)(l) =1 and fb(i)(t) CN+1foreveryt>1andie€ll,k.
Note that £ (), £ (t), £(t), £ (t) € {0,1} for every i € [1, k] and ¢ € N. Further-

more, every function of F g always computes singleton sets.
Lemma 10. For everyt € N and i € [1,k]

i I £ () =1 and £ (t+1) = 0 then £ (t4+1) =1,

ii. It £ () = 0 then £V () =0,

iii. fM(t+1) =1 ifand only if fV(t) = ... = fP ) = 1.
Proof: We show statement i by induction over i. Suppose fc(l) (t+1) = 0. Then, f,Ei) (t)
F9(t) = 0. Due to £7(t) = 1, it holds that £ (t) # £ (¢t—1) if and only if £ (t) =
Hence, eq(f,sz) (t), fﬁ) (t)) = 0 if and only if fé?) (t) =0. If i = k then fé,k) (t) = no(fc(k) (t)
thus £ () = fP¢) = 1 and £ (¢) = 0. If i < k then f7(t) = f8TV () = 0. Let to <t
be smallest possible such that f,g”l)(t’ ) =0 for all ¢’ € [ty,t]. By induction hypothesis or
due to Lemma 9, fc(l) (to+1) =1, and Lemmata 9 and 7 contradict to f,gl) (t) =1.

N
0.
);

Concerning statement ii, let fé,l) (t) = 0. Let tg < t be smallest possible such that
fé?) (t') = 0 for all t' € [to,t]. If tg = O then f(l)(O) = 1 due to Lemma 9; otherwise if

c!

i = k then fc(,k) (to) = 1 due to construction; otherwise fc(,i) (to) = 1 due to statement i.

Then, statement ii follows by Lemmata 9 and 7. Finally, f,gl)(t) =...= ftgk)(t) = 1 implies
f(E,l)(t—i—l) =1. If féz)(t) = 0 for some i € [1,k], statement ii yields f,gl)(t) = 0, hence
P t+1) =0, n

Lemma 11. If fé,l)(tg) =1 for ty € N then there is t; > ty such that f(gl)(tl) =1
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Proof: Let i € [1,k] be largest possible such that f(EZ ) (to) = 1. We will show that there
is t1 > tg such that f,gi) (t1) = 1. Iterated application of this claim proves the statement.
Note that the assumptions of Lemma 8 are fulﬁlled due to Lemma 10. If fc(k) (to) = 1 then
fa (to) =0 and f M\ (t0+1) = 0. Hence, f (t0+1) 1. If fc(k)(t[]) = 0 then fa(,i)(tg) =1.
Then, by Lemma 8 there is t; > tp+1 such that fa (t1) = 1. m
The last results justify the following definition of a phase of recurrent system S’%.
A phase [tg,t1] is an interval where fc(,l)(to) =1, f(gl)(tl) =1 and fc(,l)(t) = 0 for every
t € [to+1,%1]. In other words, ¢; is the smallest value such that ¢; > ¢y and ftgl)(tl) =1
Observe that [t1+1,t5] is another phase for some ts.
Lemma 12. Let [to,tl] be a phase, and Iet i€ [1 k] such that f (to) =1. Iffc(i) (to) =0
then f¥ (to) = £ (t1) + 1; otherwise fb, (t) = 79 (t1) +
Proof Let fc ( o) = 0. Then f ( o) = 1and f7(t) = 0. It f7(t) = 1 then
fh (to+1) = £ (t0~|—1) =0 and 7 (t0~|—2) 1T £ () # 1 then fg,)(toﬂ) 1,
fa (to+1) = 0, fh (to+1) = fh (top) and fm (to+1) = 1. Hence, fh (to+1) # fm (to—l-l)
and due to Lemma 8, there is a smallest ¢’ > #y+1 such that fa () =1 and fh (to) =
f( )( t') + 1. Due to Lemma 7, the claim holds. Now let fC ( 0) = 1 Then, there is a
largest t € [to,t1] such that f ( -1) = 0 and f () = 1. Then fh (t—1) = fb, (t—1)
and fm (t—1) = 0. Due to Lemma 7, fb, (t1) = fb, (t—1). Now the situation equals the

situation of the first case. ]

Corollary 13. Let [ty,t1] be a phase such that fc(i) (to) =1 for i € [1,k]. Then, fb(i) (t1) =
= fi () = Land " (t) = ... = £ (1) = 0

Proof: Let t € [ty,t1] be largest possible such that fg) (t) = 0. Then, fb(j)(tl) =1 for

every j € [1,7]. The statement follows by Lemma 12. ™

We can order the set of phases according to the left or right endpoints and enumerate
them accordingly starting with phase 0. Let s(?) denote the right endpoint of phase 4, i € N.
Note that s() + 1 is the left endpoint of phase i+1. Then, for every i > 0 let

1(8) =aet (FF (D), gD (D)) and k(i) =aer (FF (D), ..., £V (s9)).

Since functions f,(n1 ), ey ,Sf ) compute only singleton sets, we can say that p(7) represents an

element of N¥. We will show that the sequences defined by & and generated by Enumeratey,
can be considered equal. Let

v(i) =aet (m),...,m{") and  B(i) =aer (B, 0")

where m() and b() denote the values of variables m; and b; in phase i of Enumeratey,
respectlvely

Proposition 14. For every n > 0: pu(n) ~ v(n).

Proof: We will show the claim by induction over the phases of Enumerate; and S’g.
Subsequently, 7 means that variable of Enumeratej. It is obvious that v(0) = (0,...,0)
and $(0) = (1,...,1). Due to Lemma 9, fc(k)(l) = 1, and Corollary 13 shows pu(0) =
(fr(,f)(s(ol), 0,...,0) and /<;(0) = (fa(sO),1,... ; 1). By construction and due to Lemma 10,
it holds that f4(1) = f4(s() = 1. Finally, fm (5(0) = 0 by Lemma 12. Now let p(n) ~
v(n) and k(n) ~ (n) forn > 0. Let j € [1, k] be largest possible such that f ( J4+1) =1.
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Recall that s(™+1 is the left endpoint of phase n+1. If fc(k)(s(”)—i—l) = 0 then j is the
least number such that f ( ")) # 0, and j is equal to the value of 4 in Enumeratey, in
phase n+1. Note that f ( ) =1 for all t € [s(+1,s5"t1)] and fc(?)(t) =0 for all t €
[s(M) 42, s(”+1)] Hence, f ( J41) = f( )( (n+1)) = fb(j)( (n )) + 1. Furthermore, due to
Lemma 12, FDE0) = FD(0-41) = 7 6000) 4L and J9(s00) = (00
1= f ( )+ 1. By Lemmata 7 and 13, pu(n+1) = v(n+1) and k(n+1) = S(n+1).
Now, let fc (3(”) +1) = 1. Then, i = k + 1 in phase n+1 of Enumeratek Similarly to
the induction step, fa(s(t1) = f4(s™) + 1, and hence f (s 1) = f J(s™M) +1 =
f,S? )(s(”+1)) + 1. The remaining part follows analogously to the case discussed above. m

Corollary 15. For every a € N¥ there isn € N such that a ~ u(n).

Undecidable problems. It remains one step to accomplish the undecidability proof.
Besides the halting problem the probably most famous undecidable problem is Hilbert’s
tenth problem concering Diophantine equations [2].

Definition 3. A Diophantine equation is an equation on wvariables xi,...,xy of the
form p(xy, ..., xK) = q(xy, ..., 2K) where p and q are polynomials in xq, ...,z with natural
coefficients. The problem DIOPHANTINE asks whether a Diophantine equation has a solution
1 natural numbers.

Hilbert expected an algorithm that would decide DIOPHANTINE. However, using the
results of theoretical computer science, Matiyasevich proved the impossibility of finding
such an algorithm.

Theorem 16. [5] DIOPHANTINE is undecidable.

We will show that DIOPHANTINE reduces to M, (gr, ®,®,1), which proves undecid-
ability of the latter problem. Finally, we will reduce M, (gr, ®,®,1) to M, (U,N, D, ®)
and M., (7, ®,®), which shows undecidability of these problems. Since the halting prob-
lem is complete in X1, the first level of the arithmetical hierarchy, we can at least conclude
Y;-completeness of M, (U, N, B, ®). We assume that a Diophantine equation is given as a
set of quadruples where each quadruple represents a summand: we find an entry indicating
that it belongs to the left or the right hand side, we find the index ¢ of the variable z;, its
factor and exponent. The latter two numbers are given in binary form.

Lemma 17. DIOPHANTINE <l M., (gr, ®, ®, 1).

Proof: Let p(xy,...,z;) = q(xl, ..., Zk) be an instance of DIOPHANTINE. It holds that
(2:)% = ()% @ ()% for v > 0 and (z;)"™® = (2;)" ® (2;)® for v > «, simi-
larly 2¥ = 2v=1 @ 2*=! for v > 0. So, in logarithmic space we can compute a circuit
representation for p and ¢ and a {gr, ®, ®, 1}-function f,—, such that fy—,(ai,...,a;) =
1 < play,...,ar) = q(a1,...,a;). We obtain recurrent {gr,®,®,1}-system S from S% by
adding a new component (f,—4,0), and f,—, depends on the variables of Sg associated
with £, ..., 7%, Now, it holds that 1 € [S] if and only if there are ai,...,a; € N such
that p(ay,...,ax) = qlay,...,a;). n
Theorem 18. M., (U,N,®,®) and M., (~, D, ®) are undecidable.

Proof: Let (S,b) be an instance of My (gr, ®,®,1), n =ger dim S. By adding a compo-
nent (fp11(X) =def Tnt1,1) for x =gef (x1,...,2,41), replacing each occurence of 1 in the
functions of S by 1 and reindexing, M., (gr, ®, ®, 1) reduces to M, (gr, B, ®). It suffices
to show that gr can be expressed as a {U,N,®,®}- and a {7, ®, ®}-function. We begin
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with the second case. Consider the following definitions:

Fi(2,2) =aef 00 2@ (2 1) ® (TD2) ®0
fo(2,2) =aet 2@ fi(z,2) © (2 ® filz,2)) ©1)

fg(l',Z) —def fl(l;)z) ®la f?(l;)z) :

Let A,B C N. Let ay =gef min A and by =qer min B. Observe that [0,b] C 0d B C
N\ {bo+1}. Furthermore, {ap+1} @ NC (A® 1)@ (I1®2) C N\ [1,a0]. Thus,

(N ,ifBCA®N
f1(4, B) _{NEBI otherwise .

Evaluating fo(A, B) and f3(A, B) for both cases shows f3(A, B) = gr(A, B) for all A,B C
N. Now, let f be an n-ary {gr, ®, ®}-function represented by a circuit containing v ver-
tices. Observe that for finite and non-empty By, ..., B, C N it holds that f(By,...,B,) C
[0, (bp+1)2"] where by =gef max(By U ... U By,). Furthermore, observe that for el(x) =qef
(1 ®dz)®x) @) and a € N: el([0,a]) = [0,a(a+2)]. Hence, we can generate func-
tion el,1(x) =ger el(el,(x)) in space linear in v, and for every a € N holds [0,a?] C
el,([0,a]). Let S = (F,A) be a recurrent {gr,®,®}-system, n =ger dim S. Let ap =ger
max A. In space linear in the length if @y we can generate function g(x) such that
[0,a9] C g(A): [0,1] ® [0,1] = [0,2],[0,2] ® [0,2] = [0,4],... . Let v denote the largest
number of vertices of the circuit representations of the functions in S. Let S’ emerge from
S by adding components ({fy11(X) =det Tn+1, far2(X) =det el (9(Tnt1 U T442))), (1,0))
where X =gef (1,...,2n42). Then, for every t € N, f,12(t+1) contains all numbers that
are not larger than any number that can be generated by an {gr,®,®}-function repre-
sented by a circuit on at most v vertices applied to F(¢). Combining all these results yields
the following identity, which conclides the proof. For every A =4t {a} and B =g4¢t {b},
a,b € N, that can be computed from F(t):

gr(A, B) = ((B N(AD fria(t+1)) ® 0) U (((A N(B® fria(t+1) @ 1)) ®0) @ 1) .

It only remains to make f,, the output function of the resulting recurrent {U,N,®,®}-
system. [ ]

Corollary 19. M., (gr,®,®,1) and M., (U,N, ®,®) are ¥1-complete.

Proof: Since {U,N, ®,®}-functions on finite sets compute finite sets, My, (U, N, &, ®) is
decidable, and M., (U, N, P, ®) is the projection of My, (U,N,®, ®). n

5. Easiest membership problems. In the last section, we considered the hardest mem-
bership problems that we deal with in this paper. This section is dedicated to our easiest
problems: My, (7), My (U), My (N), Mez(T) and Mg, (U). These are the problems solvable
in nondeterministic logarithmic space. One might suspect that nondeterministic logarith-
mic space is needed because of the input representation that we have chosen. As we
already mentioned McKenzie and Wagner additionally required a topological ordering of
the vertices of the circuits to test correctness of the input representation in (deterministic)
logarithmic space. In our case, however, this would not lower the bound as we will see. At
the first glance surprisingly, My, (T) can nevertheless be solved in deterministic logarithmic
space, but this is due to the fact that {~}-functions are very easily representable.
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Figure 3. The left circuit represents the {~}-function f(x1,z9) = z9 whereas
the right structure is not a circuit.

For the rest of the paper, proofs showing containedness results for existential mem-
bership problems follow the same model. First, we will give an upper bound for the
complexity of deciding My, (O) for some set O C {U,N,”,d,®}. Second, we bound the
value of ¢ by some number r such that (S,b) € M., (O) if and only if there is ¢ < r such
that (S,¢,b) € My, (O). Bound r normally depends on b and the dimension of S.

Lemma 20. My, (7) isin L.

Proof: {~}-Functions are represented by circuits that are unions of directed trees. (Re-
member that circuits can have several sinks.) Every vertex of such a circuit that is not an
input vertex has exactly one predecessor (but may have several successors), and orienta-
tions point away from input vertices. (An example is given in Figure 3.) Hence, syntactical
correctness of instances of My, (7) can be tested in logarithmic space. Equally in logarith-
mic space it can be tested, given a {~}-function f(z), whether f(z) = = or f(z) = T by
determining the pairity of the length of the path from the output vertex to the unique ac-
cessible input vertex. Let (S,¢,b) be an instance of My, (7) where S = (F, A), n =qer dim S,
F={fi,...,fa) and A = (a1,...,ay). Let  =gef (x1,...,x,). It holds that b € f;(0) if
and only if b= a;, i € [1,n], and b € f;(t'+1), ¢’ > 0, if and only if b € f;(t'), if fi(x) = =,
and b & f;(t'), if fi(x) = T;. Consider the sequence P; =qer (v0,-..,), £ > 0, where
vg =dqet n and fy, (X)) =z, or f,,., (x) =Ty, ¢ € [0,/~1]. Consider P,. Observe that P,
is the final part of every sequence Py, t' > n. There are largest o,w € [0,n], @ > w, such
that v, = v, in P,. In logarithmic space we can determine o and w. If t < 3n, b € S(t) can
be decided straightforwardly. Let £ > 3n. Note that in logarithmic space we cannot always
count till ¢. Determine r € [0,2d—1], § =qe¢f @ —w, such that ¢ = n—a+r (mod 2§), which
can be done in logarithmic space. It holds that b € S(¢) if and only if b € S(n — a + r),
which can be decided in logarithmic space. n

If we call the subsequence (v, ..., V,) of P, a cycle, n—a denotes the length of the path
to reach that cycle. The numbers v,y1,...,V, appear only once in P;, if £ > n. The proof of
the following lemma uses similar arguments. We say that a {U}-function f = f(z1,...,z,)
depends on x;, i € [1,n], if there is a circuit representation C of f such that there is a path
in C from the input vertex labelled with ¢ to the output vertex of C'. Observe that every
possible circuit representation has this property, if there is one such circuit. Equally, we
can say that f depends on x;, if b € A; implies b € f(Ay,...,A,) for A,...,; 4, CN. Ina
similar fashion we can extend the definition of dependency to all {U,N, ™, ®, ® }-functions.

Lemma 21. My, (U) and My, (N) are in NL.
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Proof: We will prove only the containedness of My, (U) in NL. A similar proof shows
My, (N) € coNL, and the statement holds due to Immerman’s and Szelepcsényi’s theorem
(3], [11]. Let (S,t,b) be an instance of My, (U), whose syntactical correctness can be
verified in nondeterministic logarithmic space. Let S = (F, A) where F = (fi,..., fa),
n =ger dim S, and A = (aq,...,ay). Similar to the proof of Lemma 20, b € f;(t'+1), ¢’ >0,
if and only if b € f;(¢') for some j € [1,n] such that f; depends on ;. Then, b € S(t) if and
only if there is a sequence P =qef (10, - . ., ;) where v, = n, v; € [1,n] and f,,,, depends on
z,,,1 € [0,t—1], and a,, = b. We will call such sequences paths. If t < (n +1)? we can find
a path straightforwardly by guessing ¢ values v; and verifying the dependency property.
Now, let t > (n + 1)2. Let a > 0 be smallest possible such that there is § > 0 satisfying

Vo = Vais. We choose ¢ such that o+ < n. Consider sequence (Vo,Vais,-- - Vatks)
where t — 0 < a + ko < t. There is a path P' =q¢¢ (¥,...,v;) where vj = 1y and
! ! _ _ ! _ _ : ! ! !

Vo = Vgis = oo = Vyiys = Vo for £ =qes k —n + 1, since Vatts Vot (e41)50 Vot ks

can be chosen mutually different. This characterisation gives an NL-algorithm to solve
the problem. First, guess numbers v € [1,n] and 0 < n and verify the existence of a
path (zg,...,zs5) where zyp = z5 = v; a,, = b does not have to hold. Finally, verify the
existence of a path (uy, ..., un) where m < n+(n—1)-d+9 = n-(d+1), m =t (mod J), there
is ¢ < n such that u; = v and a,, = b (M, (N) requires inequality in this condition, which is
the only difference between My, (U) and My,,(N)). The remainder condition m =t (mod d)
can be checked in logarithmic space. n

Theorem 22. i. M., () and M., (™) are in L.
ii. Mg, (U) is NL-complete.

Proof: An n-ary (-function can only be of the form ¢(x) =qef ; for i € [1,n]. Hence,
syntactical correctness of inputs for M., (#)) can be tested in deterministic logarithmic space.
Since S is a recurrent {~}-system, M, (@) simply reduces to M, (7). Let (S,b) be an
instance of M¢yz(7), n =ger dimS. The proof of Lemma 20 already shows that b € [S] if
and only if b € S(t) for some t < 3n. In deterministic logarithmic space, it can be tested
whether one of (S,0,0),(S,1,b),...,(S,3n,b) is contained in My, (7).

Let (S,b) be an instance of M, (U) where F = (fi1,..., fn), n =def dim S. Using the
definitions of the proof of Lemma 21, it holds that b € [S] if and only if b € S(¢) for some

t < n, i.e., there must be a path (vg,...,;) for t < n. Otherwise, there are 7,5 € [0,n],
i < j, such that v; = v;. Hence, M, (U) € NL. Hardness of M,,(U) follows directly from
completeness of ACYC. n

Alternatively, we could prove hardness of M, (U) for NL by reducing the graph ac-
cessibility problem for acyclic graphs to Mg;(U) in the same manner as it was done by
McKenzie and Wagner. In a similar fashion, NL-completeness of My, (U) and My, (N) can
be proved. Furthermore, since Mg, (U) reduces to My, (U), which is discussed at length at
the end of Section 8, we have another reason for My, (U) being NL-complete.

The proof of Lemma 21 impressively shows that we can decide in nondeterministic
logarithmic space whether b € S(¢) for some recurrent {N}-system S and ¢ > 0. But why
does the described procedure not lead to an NL-algorithm also for M., (N)? In fact, in
Section 7 we will show that Mg,;(N) is NP-complete. The answer is simple: we cannot
bound number ¢ by a small value as in the case of M, (U). Let S = (F, A), n =ger dim S,
F={f1,-.-,fn) and A = (ay,...,a,). Suppose that b € S(t). This means that for the
first element v of every sequence (vy,...,1;) such that v, = n and f,, .. depends on z,,,
i € [0,t—1], holds that a,, = b. Suppose that there are only /n different paths. Every path
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may have another cycle length ¢ (for explanations see the proof of Lemma 21). To find a
small number ¢’ such that b € S(¢') and ¢’ < t it should be possible to shorten all paths
by the same value. However, combinational arguments require a value of ¢ exponential in
n, which is not better than the trivial upper bound 2™. Such combinational arguments are
used in Section 8 to bound the number of evaluation steps of recurrent {U, ®, ®}-systems.
Since M, (N) is NP-complete a considerable improvement can only be achieved by not
computing every evaluation step between 0 and 2".

6. Recurrent systems with arithmetic operations and intersection. In this section
we investigate several problems concerning recurrent {N, @, ® }-systems and their complexi-
ties. A striking property of {N, ®, ®}-functions is that they can compute sets of cardinality
at most 1. Since the result may also be empty, multiplication with 0 can be considered
an emptyness test. And deciding emptyness will be the major problem to solve in this
context. Note that for {U, ®, ® }-functions multiplication with 0 is nothing more than an
accessibility problem since such functions cannot compute empty sets.

The main result of this section will be that My, (N, ®) is contained in P. We only
want to mention that, even though My, (N, @, ®) is trivially decidable since only finite sets
are involved, we cannot give an interesting upper bound for the complexity of deciding
My, (N, ®) that is different from the trivial bound by applying the results of McKenzie and
Wagner, which shows My, (N, ®) € EXP.

We first want to understand {N, @, ® }-functions. The N-operator in this context can
be regarded as an equivalence test. With this notion in mind we can rewrite {N,®, ®}-
functions by systems of {®, ®}-functions in a specific sense that is given by the following
lemma. Note that a {®,®}-function is a polynomial in several variables with natural
coefficients. A {®, ®}-function over Z is a polynomial in several variables with integer
coefficiants. Since every set involved in this section is of cardinality at most 1, we will avoid
cumbersome braces. The meaning of every term will always be clear from the context.

Lemma 23. Let O C {®,®}, and let f = f(x1,...,2) be a k-ary ({N} U O)-function.
Then, there are a k-ary O-function f' and k-ary O-functions gy, ..., g, over Z, r € N, such
that, for all a € N¥,

gi(@) =0 for all i € [1,r] —  f(a) = f'(a)
gi(@) #0 for some i € [1,r] = f(a)=10

Proof: We prove the claim by induction. If f(xi,..., %) =ger ¢; for j € [1,k] then

' =qet fand r =ger 0. Let f = fiNfo, f = f1D fo or f = f1 ® fy. By induction hypothesis
there are f], f4, gi,..., gt and ¢2,..., g%, r1,72 > 0, such that, for all a € N*

gi(a) =0 for all i € [1,7] = fi(a) = fi(a)
g?(a) =0 for all i € [1, 7] = fo(a) = f5(a)
gi(a) #0 for some i € [1,71]] == fi(a)=10
g?(a) #0 for some i € [1,79] = fo(a)=10.

If f=/fidfeor f=f @fythen f has the claimed property using f| ® f5 or f| @ f,
respeCtiveIY7 and g%v"'agglag%w“vgé' Let f = fl N f2- Let f, =def f{a gi =def gzl for
i € [1,71], gri+i =der 97 for i € [1,ro] and g, =qer f| — f3, 7 =det 71 + 72 + 1. Let gi(a) =0
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for a € N¥ and all i € [1,7]. Then fi(a) £ 0, f2(a) # 0, fi(a) = fi(a), f2(a) = f5(a) and
fi(@) = fa(a) = f'(a). If there is i € [1,7] such that g;(a) # 0 for a € N¥ then fi(a) = 0 or
f2(@) =0 or fi(a) # fz(a). Hence, f(a) = 0. n

Since we assume functions to be represented by arithmetic circuits, Lemma 23 pro-

vides a simple P-algorithm that reduces {N, ®, ® }-functions to {®, ®}-functions by simply
deleting all N-vertices in the circuits. Precisely, if v is a N-vertex in such a circuit then we

delete v and connect one predecessor of v to all successors of v. Finally, all unnecessary
vertices are deleted.

Corollary 24. Let O C {®,®}. Let S = (F, A) be a recurrent ({N} U O)-system. Then,
there is a recurrent O-system S’ = (F', A) such that for every t € N, S(t) # (0 implies
S(t) = S'(t), and S” can be computed by an FP-function.

Proof: Let n =ger dim S and F = (f1,..., fn). Let F' =qer (f1, .-, f1) where f!, i € [1,n],
is the function corresponding to f; according to Lemma 23. Induction over ¢ shows that
fi(t) # 0 implies fi(t) = f1(¢), i € [1,n]. .

It is a well-known fact that integer multiplication can be reduced to componentwise
addition of vectors. McKenzie and Wagner applied this idea to reduce MC(O U {®}) to
MC(O U {®}) for all {O} C {U,N,”} [6]. As intermediate problems circuits operating on
vectors over N were used. Since the finite character of circuits permits to bound the results,
vectors could be regarded as natural numbers represented in a k-ary number system for a
suitable very large k (which, in fact, is determined by the largest number that could be
computed by such a circuit). The length of k£ can be bounded by the input length, i.e., by
the number of vertices of the circuit and the length of the input numbers.

We would also like to reduce exact membership problems with arithmetic operation
only ® to exact membership problems with arithmetic operation only ¢. However, the
above sketched method does not work. Even though the concerned circuits may be consid-
ered finite, the numbers that can be computed may be of exponential length in the length
of the input. Hence, number k as the base of the representing number system should be
of exponential length, which cannot be realised by a polynomial-time reduction. However,
in case of special recurrent {N, ®}-systems, we can apply a slightly modified idea. Let
M, (N, ®) denote the set of all triples (S, ¢,b) € My, (N, ®) where b > 0. Remember that
two numbers p and ¢ are relative prime, if their greatest common devisor is 1. A gcd-base B
for D C N is a set of pairwise relative prime numbers greater than 1 such that every number
greater than 1 of D is the product of numbers from B. Furthermore, for given set D, a
gcd-base B for D can be computed in polynomial time, and B then is only of polynomial
size.

Lemma 25. M} (N, ®) <P My, (N, D).

Proof: Let (S,t,b) be an instance of M; (N, ®) where S = (F,A), F = (fi,..., fa),
n =gef dim S, and A = (ay,...,ay). Let B =4er {q1, - - -, ¢} be a gcd-base for {aq, ..., a,,b}.
We define recurrent {N, ®}-systems Sy, ...,Sp, S; =def (Fi, A;), @ € [1,£] as follows. Let
Fi =aef {f1,---, f},) where f]’ emerges from f; by replacing each ® in f; by @, j € [1,n].
For i € [1,0], A; =qer (a},...,al) where af is the largest number ¢ such that (¢;)¢ is a
divisor of a;, if a; > 0; if a; = 0, aj is the smallest number ¢ such that (g;)¢ is not a
divisor of b. Then, it holds for every i € [1,/] and every ¢t € N that S;(t) = c is the largest
number such that (g;)¢ is a divisor of S(t), if S(¢t) # 0 and S(¢) # 0. Let r;, i € [1,4],
be the largest number ¢ such that (¢;)¢ is a divisor of b. Hence, S(t) = b if and only if



(t) r; for all ¢ € [1,/]. We define the following functions: f; L(X) =qef fi(xi), i € [1,4],
[1,n], where x =g¢f (21, ..., 2. (n+1)+1) and X; =qef (Tin_ni1,---,Lin). Furthermore, let

X) =def Tenti, ¢ € [1,/], and f( ) =det Zle(xm N Zp,1;). Finally, we define a recurrent
+} system S" =ge (F', A") where

F' —def <f17"'7f7%7f127"'7f7€,7}.17---7.}.@7}.>

A =ger (al, .. ak,a?, . ab e,
and 7 is the smallest number that is not equal to ' =gef 71 +. .. +7p. With these definitions
it holds that S(t) = b if and only if S’(t+1) # 0 if and only if S’(t+1) = . Then,
(S,t,b) € M} (N, ®) if and only if (S',t+1,V') € My, (N, ®). The described reduction can
be performed in polynomial time. m

The described construction fails if we want to reduce an instance (S,%,0) of M, (N, ®)
to some instance of My, (N, ®). Multiplication with 0 just gives 0, and since addition is
monotonic, it is not clear how to model such a behaviour.

In the following part of the section, we will show that My, (N, ®) can be decided in
polynomial time. This implies that My,,(®) and My, (®) can also be decided in polynomial
time. In the following section, the corresponding existential membership problems turn
out to be NP-complete. Let f = f(x1,...,2z,) be a {®}-function that is represented
by circuit C. Let ay,...,a, € N, and let v be the number of vertices in C. Then,

e <2”-max{ay,...,a,} where {e} = f({a1},...,{an}).
Proposition 26. M;,,(®) is in P.
Proof: Let (S,t,b) be an instance of My, (®) where S = (F, A) and F = (f1,..., fa),

n =get dim S. For each i € [1,n], it holds that f;(x) = Z? 1€ Tjy X Zdep (T1,- -+, Tn),
for cé- € N, j € [1,n]. Since f; is given as an arithmetic circuit Cj, ¢ ; is equal to the

number of paths from the input vertex in C; with label j to the output vertex of C;. This
number can be computed in polynomial time by a straightforward strategy: if «' and "
are the predecessors of u, then the number of paths from the input vertex with label j
to u is the sum of those numbers for v’ and u”. We define an n X n-matrix M over the
semiring SR(b) as follows. For all i,j € [1,n], M;; =qer ab(cé-). Using this definition it
holds for every ¢’ € N that o (S(H'+1)) = ap(f (MY A)). We observe that M2k = M*k . M*
and M?F+1 = MF¥ . M* . M. Hence, we can compute M’ using at most 2 - [log#] matrix
multiplications. In order to achieve polynomial time we calculate M in SR(b). n

It is time to consider an easy but interesting example: the Fibonacci numbers. We
define a recurrent {®}-system Fib = (Fpip, Arib) as follows:

Frib =def (f1(T1,22) =det T2, f2(T1,T2) =det 1 D T2)

Arib =der (0,1).
We compute the first three values of Fib: Fib(0) = 1, Fib(1) = f5(0,1) = 1, Fib(2) =
f2(f1(0,1), f2(0,1)) = fo(1,1) = 2. Indeed, we obtain the Fibonacci numbers. The proof
of Proposition 26 shows that we can generate this sequence by matrix multiplication. Let

0 1
M:def(l 1>

and A =qer (0,1). Then, the (k+1)-th Fibonacci number (where the second is 2) is equal
to the last component of M* A:

(@) e )0 e 0)-()
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Corollary 24 determines one way to decide My, (N, ®). For a given recurrent {N, ®}-
system S, we define S as given by Corollary 24. If S(t) # 0 for t > 0, then S(t) = S'(¢t).
This case is solved by Proposition 26. It remains to decide whether S(t) = (). Let O C
{U,N,~,®,®}. The problem EMPTY(O) is the set of all pairs (S, ) where S is a recurrent
O-system and t € N such that S(¢t) = 0.

We do not know how to decide EMPTY (N, @) in polynomial time. However, for deciding
My, (N, @) in polynomial time it suffices to consider only a subset of EMPTY(N, ®). Let
G = (V, A) be a directed graph. A cycle of length k in G is a sequence C = (z1,...,%)
of vertices of G such that C is an z1,zg-path in G and (zg,z1) € A. Let S = (F, A)
be a recurrent {N, ®}-system, F = (f1,..., fn), N =qef dim S, and obtain S’ from S by
replacing every N in the functions of S by @®. Let M’ be the matrix for S’ as it is defined
in the proof of Proposition 26. We can interpret M’ as the adjacency matrix of a directed
graph. Let Gg = ([1,n], Ag) be the graph on n vertices where (i,7) € Ag if and only if
M;j; # 0. Equivalently, (¢,j) € Ag if and only if f; depends on the j-th input. Function f;
appears in a cycle of length k, if there is a cycle of length k£ in Gg containing vertex .
The problem o-EMPTY(N, @) is the set of all pairs (S,¢) in EMPTY(N, @) where the output
function of S is contained in a cycle.

First, we show that o-EMPTY(N, @) can be decided in polynomial time, which is heavily
based on a lemma of linear algebra. Let L be a 1 x n-matrix over Z, n > 1. Let [L] =get
{x € R" : Lx = 0} denote the hyperplane of R" defined by L.

Lemma 27. Let M be an n X n-matrix over N and L be a 1 X n-matrix over Z, and let
acN. If M'a € [L] for all i € [0,n—1] then M'a € [L] for all i > 0.

Proof: Let k& < n—1 be smallest possible such that M**la = Zf:o c; - M'a for some
Co,...,cr € R. We show by induction that for every ' > k+1 there are zg,...,2x € R
such that M"a = S2F  u; - M'a. Let xg,...,7; € R such that M"a = Y% z; - M'a
for r > k+1. One easily verifies that M"+'a = Zle(xi,l + ki) - M'a + zpco - a. By
assumption, M'a € [L], i < k. It holds then that M"a € [L] for every r € N. n

Proposition 28. o-EMPTY (N, ®) is in P.

Proof: Let (S,t) be an instance of o-EMPTY(N, ®) where S = (F, A) and F = (f1,..., fn),
n =qef dim S. We apply Lemma 23 and obtain f{,...,f; and g,...,¢},6%,...,9" such
that, for every ¢ € [1,n] and every a € N",

gi(a) =0 for all j € [1, 7] = fi(a) = fl(a)
g;:(a) #0 for some j € [1,7;] = fi(a)=10.

Let M be the n x n-matrix that is defined by (ff,..., f)) in the way described in the proof
of Proposition 26. For i € [1,n] and ¢ € N, f;(t+1) = 0 if and only if f/(F(t)) = 0 or
there is j € [1,r;] such that g;. (F(t)) # 0. Let k¥ < n be the smallest number such that f,
appears in a cycle of length k. If there is ¢’ < 2n? such that S(#) = 0 and ¢’ =t (mod k),
then S(t) = (0. We will show that this claim can be strengthened to a characterisation. Let
t > 2n? and let S(t) = 0. Let P =4e (10,71, ..,v,) be a longest path in Gg such that
vy =nand f,, (t—i) =0, i € [0,7]. Note that f,, does not depend on a variable z; such that
fi(t—r—1) = . We might say that f,, (t—r) = 0 causes S(t) = 0, which is proven by path P.
Consider the subsequence P’ =4¢r (g, Vk, ..., Vsk) Of P where s -k <r < (s+1)-k. If a
number appears twice in P’, say v; and v/, j < j', then P" =ger (vo,v1,. .., V5, Vjrg1,. .., 1)
proves that f,(t — (5'—7)) = 0. Note that t =t — (j'—7) (mod k). We apply this argument
repeatedly and obtain that, if f, (') = 0 for ¢’ € N, then S(t") =0 for ¢/ + kn —k <" <
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Figure 4. Graph Gg for some sample recurrent system S.

t'+kn <t +n?and t" = t'+r (mod k). Let tg € [1,k] such that ty = ¢ (mod k). Then, for
all i € N such that ty + ik < t — r holds that f, (to +ik) # () by the maximality of P. Let
T =det M* and Ay, =ger M1 A. Due to Lemma 23, if f,, (to) # 0 then f,, (to) = fI, (As,)-
For i < n, if f, (to +ik) # 0 then f, (to +ik) = f}, (T*Ay,). Furthermore, f, (to +ik) # 0
if and only if g;" (T*A;)) = 0 for all j € [1,7,]. We apply Lemma 27 and obtain that
fu.(to+(n—1)-k) # 0 if and only if g;" (7" 4;,) = O for all i € [0,n—1] and j € [1,7,,]. Since
fu. (t—=r) =0, there is i < n such that f,, (to +ik) = 0, where to +ik < k+ (n—1) - k < n?.
Hence, if S(t) = () then there is ¢ < 2n? such that S(¢) = 0 and t = ' (mod k). It takes
polynomial time to compute F(0), ..., F(2n?), which concludes the proof. ™

Before we finish the proof of our main result of this section, we want to understand
the construction of the final part. Consider Figure 4. It is shown graph Gg of a 9-
dimensional recurrent {N, ®}-system. For instance, function f; depends only on z1, whereas
function fo depends on =1 and xo. Proposition 28 shows that we can decide for every ¢t > 0
in polynomial time whether fo(t) = () or whether f5(t) = 0. We want to decide whether
f9(20) = 8. Then, it must hold that f5(18) # 0, f5(18) # 0, f5(19) # 0 and fs(18) # 0.
Furthermore, f>(18), f5(18), f5(19) and fg(18) must all have value not greater than 8.
Applying the method of Corollary 24 and Proposition 26, we can calculate in polynomial
time these values or decide that some of them exceeds 8. Finally, we can straightforwardly
evaluate f7(19), fs(19) and f9(20) in polynomial time.

Theorem 29. My, (N,®) is in P.

Proof: Let (S,t,b) be an instance of My, (N, ®) where S = (F,A) and F = (f1,..., fa),
n =qef dim S. Let f{,..., f be the functions that we obtain by application of Lemma 23.
Let F' =ger (fi,---, 1), and let S" =qe¢ (F', A). Due to Lemma 23, if S(t) # 0 then
S'(t) = S(t). If the output function f, of S is contained in a cycle then (S,t,b) € My, (N, ®)
if and only if (S',¢,b) € My, (®) and (S,t) € o-EmMPTY(N,®), which can be verified in
polynomial time.

Let f, be not contained in a cycle. If ¢ < n S(t) can be computed straightforwardly.
Let t > n. Consider Gg. Since vertex n does not appear in cycle in Gg there is a maximal
connected subgraph G of Gg that contains n and that does not contain a vertex that
appears in a cycle. (In Figure 4 this subgraph is induced by the vertex set {7,8,9}.) It
holds that every vertex in GI™ has a predecessor, and all those predecessors that do not
occur in G are contained in cycles in Gg. Let N be the set of predecessors of vertices in
G that are not contained in G, (In Figure 4 this is the set {2,5,6}.) G is acyclic,
and therefore every path in G[" contains less than n vertices. If we know all values f; (t")
where i € N and t —n < t’ <t we can compute f,(t). However, for large ¢t these values can
become large. It suffices though to calculate the values in the semiring SR(b), since it does
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not matter whether f,,(t) = 0 or f(t) > b, if f,(t) #b. Let S’ the recurrent system that
emerges from S by application of Corollary 24. The proof of Proposition 26 shows that
we can calculate in polynomial time F'(t —n +1),...,F'(t) in SR(b), where F' belongs
to S’ in the obvious sense. For every i € N and every t' € [t—n+1,¢t] it can be verified
whether (S;,t') € o-EMPTY(N, ®) where S; emerges from S by renaming such that f; is
output function. Compute a topological ordering of the vertices of Gg. According to this
ordering, compute for every function f; whose corresponding vertex j belongs to G the
values fj(t —n +c),..., fj(t) where c is the length of the longest path from n to j in Gg
(remember that Gg is acyclic). All this can be done in polynomial time. Accept if and
only if f,(t) =b. m
Corollary 30. M, (®) and M}, (N, ®) are in P.

Proof: Let (S,t,b) be an instance of My, (®) where S = (F, A). If b = 0 then obtain S’
by replacing every ® in the functions of F by U. We observe that 0 € S(t) if and only if
0 € S'(t). If b > 0 then (S,t,b) € My, (®) if and only if (S,¢,b) € M, (N, ®). n

McKenzie and Wagner showed that MC(®), MC(N, ®) and MC(N,®) are C-L-hard,
so that My, (®), My, (N, ®) and My, (N, ®) are C_L-hard. Their MC(®) problem, however,
is NL-complete.

7. NP-complete membership problems. In the last sections we studied, among others,
the exact membership problems for recurrent {N}-, {&}-, {®}- and {N, ®}-systems. All
these problems can be decided in polynomial time. We will show in this section that the
corresponding existential membership problems are NP-complete. Containedness in NP
of all these problems is given by a rather formal argument. To show hardness we define
a new problem that turns out to be NP-complete and that we reduce to Mg, (N). This
new problem can be considered a generalization of the Chinese Remainder Theorem. The
Chinese Remainder Theorem shows that a system of congruence equations where the moduli
are pairwise relatively prime numbers has a solution that is unique in a determined interval
of natural numbers. We extend this problem with respect to two aspects. Moduli are
arbitrary numbers, and for each modul we find a set of congruence equations. A solution
of this Set-system of congruence equations fulfills one equation from each set. Formally, we
define the problem SET-SCE as follows.

Solution of a Set-System of Congruence Equations (SET-SCE).

INSTANCE. ((Ay,b1),...,(Ak, b)) where Ay, ..., Ay are finite sets of natural numbers, and
bi,...,b; are natural numbers greater than 1 represented unarily.

QUESTION. Are there n € N and a; € Ay,...,a; € Ay such that n = a; (mod b;) for all
i€l k]?

Note that it is not important to require binary representation of the numbers in
Ay, ..., Ar. However, we assume a binary representation of them, only to fix a system.

Lemma 31. SET-SCE is NP-hard.

Proof: We reduce 3-SAT to SET-SCE. Let H =gef H(21,...,2,) be a Boolean formula in
3-CNF, and no variable appears twice in a clause. Let k be the number of clauses of H,
and let Ky,..., K be the clauses of H. Let py,...,p, be r prime numbers. We define for
every j € [1,k]:

b — ﬁ pi , if z; is variable in Kj
g —def 1, if z; is not variable in Kj .
i=1
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Variables in each clause are ordered according to their indices. Let f; = f;(z1, 22, 23) be the
Boolean function defined by K. Let ) 2@ 23) be the variables in K and p) p(2) p(3)
the corresponding primes. Let N; be the set of all natural numbers a smaller than b; such
that, for all i € [1,3], @ = 0 (mod p®) or @ = 1 (mod p(). Note that, by the Chinese
Remainder Theorem, N; contains exactly eight numbers, among them 0 and 1. We define
A; as the set of all numbers a € N; such that fj(c(l), 2 ¢3)) =1 where

(i) _ 1 ,ifa=0 (mod p(f))
¢ def{O ,if a =1 (mod p®)

and 7 € [1,3]. Let B be a satisfying assignment for H. Due to the Chinese Remainder
Theorem there is a number n < p; - ... - p, that satisfies the congruence equations

n=1-f(z;) (mod p;)

foralli € [1,r]. Let j € [1, k], and let pM), p(2) p(3) correspond to the variables z(1) z(2) z(3)
in Kj. Let a < b; satisfy
a=1-3(z%) (mod p)

for every i € [1,3]. Observe that a € A;. Since the remainders of a and n correspond on
pM, p®@ and p®, n = a (mod b;) due to the Chinese Remainder Theorem. Hence, n is a
solution of Sy =ger ((A1,b1),- -, (A, bg)). Now, let n be a solution of Si. We will show
that 3, defined as

N 1 ,ifn=0 (mod p;)
Bli) =det {0 ,if n Z 0 (mod p;)

for all ¢ € [1,r], satisfies H. Let a € A; such that n = a (mod b;), and let x; be a variable
in K; such that ¢ € {x;,~x;} is literal in K; and £ = x; if and only if a = 0 (mod p;).
Then, ¢ = x; if and only if n = 0 (mod p;) by the Chinese Remainder Theorem. Therefore,
K; is satisfied by (.

It remains to show that the reduction can be carried out in logarithmic space. The

interval [2,72] contains r primes. The sets A; and the numbers b;, i € [1,k], can be
constructed by straightforward enumeration and verification in logarithmic space. n

Let M}, (N, ®) denote the set of all pairs (S,b) in M, (N, ®) where b > 0.
Theorem 32. M., (N), Mg, (D), Mex(®), Mz (N, ®) and ME, (N, ®) are NP-complete.

Proof: We first show that SET-SCE reduces to M, (N). Let S =qer ((A1,01), .-, (A, br))
be an instance of SET-SCE. We assume that A; only contains numbers that are smaller
than b;; otherwise find appropriate sets A,. We define a recurrent {N}-system S =qef (F, A)
as follows. For every i € [1, k], for every j € [1,b;—1] we define

f](i) (X) =der $§Q and féi) (x) =def x,(,l),l
where X =qef (xgl), e ,:1:,()1)71, 51;82), . ,:U,EI:ZI, z'). Let A =qef (c(()l), e ,cglzll, 0) where cg-i) €
{0,1} and cg-i) = 1 if and only if j € A;. Furthermore, let f’'(x) =qef xgl) Nn...N xék) and
F =aer 5, 21, 1), Tt holds that f7(t) = 1 if and only if ¢}’ = 1 for v < b; and
v=1t—j (mod b;). Hence, (S,1) € M¢,(N) if and only if S € SET-SCE. An FL-function

can perform this reduction since the numbers b; are given in unary representation. By
Lemma 31, Mz (N) is NP-hard.
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Now, let (S,b) be an instance of M¢;(N) where S = (F, A). We define recurrent {®}-
and {®}-systems S’ and S” as follows. Let F' and F” emerge from F by replacing each
occurrence of N by @ and ®, respectively. Let A’ emerge from A by replacing b by 0 and
all other numbers by 1. Similarly, obtain A” by replacing b by 1 and all other numbers
by 0. Let §' =qof (F',A') and S" =ger (F", A"). Then, (S,b) € Mey(N) if and only if
(5',0) € Mgy (@) if and only if (S”,1) € M, (®) if and only if (S”,1) € M, (N, ®). It is
obvious that Mg, (@) reduces to M, (N, ®).

Let (S,b) be an instance of M. (N, ®) where S = (F, A). Let n =ger dim S. S can
be evaluated in the semiring SR(b), and the situation () can be considered equal to the
situation b+1. Hence, S can generate at most (b+2)" different configurations with respect
to b, i.e., b € [S]if and only if b € S(t) for some ¢ < (b+2)". Since My, (N, @) is polynomial-
time solvable by Theorem 29, M,,.(N, ®) is in NP.

M, (®) reduces to M, (U) UMZ, (N, ®) by the proof of Corollary 30. Let (S,b) be an
instance of M}, (N, ®) where S = (F, A). Let n =gef dim S. Observe that S can be evalu-
ated in the semiring SR(b) and that the situations (), a for a > b and 0 can be considered
equal. Hence, similar to recurrent {N, ®}-systems, S can generate at most (b+1)" different
configurations with respect to b. Hence, M1 (N, ®) is in NP by Corollary 30. m

Corollary 33. SET-SCE is NP-complete.

It remains open not only whether My, (N, ®) is polynomial-time decidable but also
whether M, (N, ®) is contained in NP. We do not know any upper bound ¢ for ¢ such that
0 € [S] if and only if 0 € S(t) for some ¢ < ¢ where S is a recurrent {N, ®}-system.

8. PSPACE-complete membership problems. This section contains three interesting
results. First, we will see that the existential membership problem for finite recurrent
{U,N}-systems is PSPACE-complete. Containedness is less more than an observation.
Hardness is shown by a reduction from QBF. Astoundingly at first glance, the correspond-
ing exact membership problem is PSPACE-complete, too. This differs from the problems
studied in Sections 6 and 7. Second, we will show that M, (U, ®,®) can be decided in
polynomial space. This result is surprising when we keep in mind that MC(U, ®,®) is
PSPACE-complete [16]. Third, we will show that a recurrent {U, ®, ®}-system S needs at
most (b+1) - 27° evaluation steps to generate number b where n =g dim S. This leads to
a polynomial-space decision algorithm for M, (U, ®, ®).

A quantified Boolean formula is a first order logic-formula without functions, predicates
and free variables. We assume that every quantified Boolean formula H is of the form H =
1z ... QuryH (21, ..., 2,) where Qq,...,Q, € {3,V} and H'(zq,...,z,) is a Boolean
formula with A, V and — and every — applies only to variables z;, i € [1,n]. Every quantified
Boolean formula evaluates to true or false (1 or 0, respectively). The problem QBF is the
set of all true quantified Boolean formulas. This problem was introduced by Stockmeyer
and Meyer [10].

Theorem 34. [10] QBF is PSPACE-complete.

We want to enumerate all binary n-tuples over {false, true} iteratively representing the
Boolean values by the question whether a given set contains a specified element. Consider
the following {U, N}-functions:

Cl (a7
C?(aa

S]l

,6,€,6,C) =gef (((aNe)U(@nc))ne)U(enc) and
,€6,6,6,C) =gef (((aNc)U(@ne))ne)U(enc).

S]l
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By checking all possible cases we obtain the following lemma. The operator A denotes the
symmetric difference, i.e., the set-theoretic equivalent of the Boolean xor-function.

Lemma 35. Let A,B,C,D,E,F CN andbe N. Ifbe (AAB)N(CAD)N (EAF) then
i.be (A B,C,D,E,F) A (2(A,B,C,D,E,F),
ii. be (1(A,B,C,D,E,F) A E if and only if b€ AN D.

Using functions ¢; and (o we can construct a recurrent {U, N}-system that enumerates
all binary n-tuples, n > 1. Let u =gef (w1, W1, - - -, Uy, Uy ). We define:

=def C1(ui, Ty, fi(u), fi (W), Uip1, Tisr)
=def C2(ui, Ty, fi(u), fi(W), wiy1, W), i € [1,n—1].

Observe that every function can be represented by a {U,N}-circuit of size at most ¢ - n
for some constant c. (A close look reveals ¢ < 20.) Let Flm =def (f1,f1,---s[n, fh),
AL i =def ({0}, {1}, ..., {0},{1}) and SZ . m =def (Fums Abum). With these definitions
the prerequisites of Lemma 35 are fulfilled using b = 1. The next lemma shows that
fn(t)... fi(t) can be interpreted as a representation of the n least significant bits of the
binary representation of ¢ € N. Let bin;(t), i« > 0, denote the i-th least significant bit of
the binary representation of ; the count starts with 0, i.e., bin;() is the coefficient of 2¢ in
the binary representation of ¢.
Lemma 36. For everyt € N andi € [1,n]: 1 € f;(t) <= bin; 1(¢t) = 1.
Proof: We prove the lemma by induction over i. The claim is obviously true for : =
0. Let i < n. First, f;11(0) = {0}. Consider f;i(t+1). If bin; 1(¢) < bin; 1(¢t+1)
then bin;(t) = bin;(t+1). By induction hypothesis and Lemma 35, the claim holds. If
bin; 1(t) > bin; 1(t+1) then bin;(¢) # bin;(¢t4+1). Induction hypothesis and Lemma 35
show the claim. m
Let H=Q1x1...QunxyH (x1,...,2,) be a quantified Boolean formula. For ¢ € N and
L € [07 n]v let HO (t) —def Qn7i+1$n7i+1 s annH,(binnfl(t)v ..., bin; (t), Ln—i+l--- ,In).
Note that the functions bin; are ordered by decreasing index whereas the variables x; are
ordered by increasing index. Suppose that @, = 3. Then, H = (H" 1(0) v H* (2" 1)).
If we (inductively) construct an evaluation tree for H where the values of H"~!(0) and
H™ (27~ 1) are the values of the predecessors of a final V-vertex, H"(0) denotes the value
of this V-vertex. Hence, H(t) for i € [0,n] and ¢ > 0 represents the value of some V- or
A-vertex in that tree.
Theorem 37. QBF <& M., (U,N).

Proof: Let H = Q21 ...QuzpH'(21,...,2,) be a quantified Boolean formula in the
variables x1, ..., x,. We will define a recurrent {U, N}-system that evaluates H as it would
be done by an alternating Turing machine. Let

A=qer ({0}, {1},..., {0}, {1}, {1},{0},...,{0},{0},...,{0},{0},...,{0})
F =det (fla f{: S fna frlu €0, €1, - -5 €ny 905 ---» Yn, Po, -, hn>

X =def (Ul, ﬂl;---auna ﬂn; €0, C1y, ---5, Cpy, S0, ---5 Sn, 20, 7Zn)

where Flum =def (f1,f1,---s fn, fn). The functions fi,..., f, are defined on wuy,..., %y,
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and the functions e;, g;, h;, are defined as follows. For i € [1,n]:

eo(X) =def o
ei(X) =det €i—1(x) N fi(x)

9o(X) =der 50

gi(x) =der (wi Ns3) U zi_y
ho(x) =ger valg: (x)

() e e (x (gi(x) Uhi—1(x)) if Qniy1 =1
i) =sr 0 { (S e

Function valg (x) will be specified later. However, it holds that 1 € valg: (t) & H®(¢) = 1.
We will show that h,(2"—1) contains 1 if and only if H € QBF. Observe that 1 € ¢;(t) for
t € N if and only if bin; 1(t) = -+ = bing(t) = 1.

Claim A. Let i € [1,n] and t; € N such that 1 € e;(tg). Then, 1 € g;(¢o) if and only if
1e hi—l(tO — 2i_1).

We show by induction over ¢ € [ty — 201 + 1, 4] that 1 € g;(¢) if and only if 1 € h;_(tg —
20=1). Since 1 & fi(to —2'1) it holds that 1 € g;(tg — 2" ' + 1) & 1 € h;_1(tg — 2°1). Let
tefto—2"1+1,tg—1]. 1 &€ e; 1(t) hence 1 & h; (). We obtain

1€gi(t+l) <= 1€ (filt)Ngi(t)) Uh;i1(t) <= 1€ gi(t) <=1 € hy_1(to — 2'71).

Claim B. Let ¢ty € N such that 1 € e, (ty). Then, 1 € h,(to) if and only if H = 1.
We show by induction over ¢ € [0,n] that for every t € N where 1 € ¢;(¢) holds: 1 €
hi(t) <= HW(t) = 1. For i = 0 the claim holds by definition. Let i € [0,n—1]. If
Qn—; = 3 then
lehipi1(t) <= 1€e1(t)N(gir1(t) Uhi(t))
> L€ gir1(t) Uhy(t)
= 1€ hi(t —29) Uhy(t)

— HOt-2y=1or HI(t) =1
— HF@¢) =1.
If Qr_; =V the proof is similar to the previous case.
To obtain function valy: we introduce new variables 1, ..., T, and replace every oc-

currence of —x; by T;. (Remember that — only applies to variables.) Replacing V and
A by U and N, respectively, and z; and T; by up—;y+1 and %,—;41, respectively, we obtain
the function valy: which has the desired property. S =4ef (F, A) can be computed by an
FL-function. It holds that H € QBF +— (5,1) € M, (U,N). n

We provide a small example that shall illustrate the construction of the last proof. We
choose the quantified Boolean formula H as

H —def E|£L‘1VCCQE|CL‘3((1,‘1 A —|£I?2) \% (—lil?g A 131)) .

This formula obviously evaluates to 1. In Figure 5 the result of the transformation process
is presented by means of a circuit representation. The S2,,,, part is not included into the
picture due to legibleness. Of course, every function must be represented by its own circuit,
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Figure 5. The result for formula H =ger 3z1Vrodzs((z1 A —z2) V (-3 A 1))

which can be obtained from the given picture by deleting all irrelevant vertices. Vertices
with the same name are considered identical, which applies to the vertices u1, us, us.

We now turn our attention to recurrent {U,®,®}-systems. We will show that the
exact as well as the existential membership problem for these systems are in PSPACE. To
achieve this we will first show that we can bound the number of evaluation steps for proving
that a number b can be generated by a given system by some “slowly growing” function.
Let S = (F,A) be a recurrent {U, ®, ®}-system, F = (f1,..., fn), and let ¢ € N. With
each function of F we associate a combinatorial {U, ®, ®}-circuit. Consider the following
definition:

(%) =aer w1 and £ x) =aer i), S0 (), >0,
FOx) =qer £1(x).

We obtain f® by t-fold superposition. Similarly, we obtain, by identifying vertices, a
circuit representation C' of f(!). Labelling the input vertices of C' with the corresponding
numbers of A results in a {U,®,®}-circuit representation C'y of S(t) = fM(A). The
formula representation F' of S(t) is obtained from Cy by unfolding circuit Cy, i.e., F is a
tree and each vertex of F' is root of a subtree of F. A computation tree for F is a maximal
subtree of F' such that every vertex with label U has exactly one predecessor and every
other vertex (vertices with labels @ or ®) has two predecessors. If we additionally label
vertices of a computation tree with their value, which is for input vertices the label itself, for
vertices with only one predecessor the value of the predecessor and for the other vertices
the sum or product of the values of the predessors, then the root vertex has a member
of S(t) as value. Computation trees have been introduced by McKenzie and Wagner to
analyse the complexity of MC(U, ®). A number is in S(¢) if and only if it is the value of
the root vertex of a computation tree for F'.

Lemma 38. Let S = (F,A) be a recurrent {U, ®, ®}-system, n =gef dim S. Let b € N.
Then, b € [S] if and only if there is t < (b+ 1) - 2" such that b € S(t).

Proof: If n = 1 the claim is immediately clear. Let n > 2. If b < 1 then it suffices
to evaluate S in the semiring SR(1). Since there are only eight possible sets for each
input, the number of evaluation steps to decide (S,b) € M, (U, ®,®) can be bounded by
8" = 23" < 27° Let b > 2. We assume that no function of F is of the form ¢(x) = ;.
Otherwise, we would add an (n+1)-th component (f,11(X") =qef 1 D Tp11,b+1) to S and
replace every function f;(x) = z; by f/(x') =dgef ; U z541. Obviously, this does not effect



Membership problems for recurrent systems over sets of naturals. 27

the question b € [S] and is only of technical advantage. Let ¢ > 0 be smallest possible such
that b € S(t). Let F be the formula representation of S(¢), and let 7' be a computation
tree for F' with root value b. The reduced computation tree B of T' is the maximal subtree
of T' containing the root vertex of T' that does not contain vertices with value greater than
0 in a subtree with a root vertex labelled with ® and with value 0. In other words, if u is a
vertex in B that is labelled with ® and has value 0, then all paths in B from input vertices
to u contain only vertices with value 0. We define levels of B as follows. Each vertex
of B that corresponds to the output vertex of the circuit representation of some function
of F is labelled with the index of the corresponding function; the input vertices of B are
labelled with the index of the corresponding variable. Note that some vertices now have
two kinds of labels: numbers from A or U, ®,® and indices 1,...,n. Then, L, contains
exactly those vertices that are labelled with an index and that lie each on a leaf-root path
in B with exactly r index-labelled vertices preceding it. Leaves or input vertices of B are
exactly the vertices in Ly whereas the root vertex of B is the only member of L;. Observe
that every leaf-root path in B passes the same number of index-labelled vertices. Note the
following correspondence: if some vertex from L, is labelled with index ¢ and has value a
then a € f;(r).

By our definition of a reduced computation tree the value of a vertex in B is not
smaller than the value of any of its predecessors. Let u and v be vertices in B with the
same value such that there is a path from v to u. Then, every vertex on the v, u-path has
the same value as u and v. Suppose there are ri,r7, € N such that rq > on’ 4 ro and for
each vertex u in L, there is a vertex v € L,, in the subtree of B rooted by w such that
uw and v have the same value. Such vertices constitute pairs. If v has value greater than
1, there is only one such pair for u. Let (u,v) be a pair with value of u greater than 1.
Consider the v, u-path P. Let w be a vertex on P different from v. If w has label & then its
predecessor that does not lie on P has value 0, if w has label ® the respective predecessor
has value 1. Let (u/,v") be another pair such that u and ' as well as v and v’ have the
same index-labels. Then, we can replace the subtree rooted by u' by a copy of the subtree
rooted by u, replace the subtree rooted by v in the copy by the subtree rooted by v’ (see
Figure 6) and obtain a reduced computation tree for F' with root value b. We repeat this
procedure for other pairs as long as possible and obtain a reduced computation tree B*
for F with root value b that contains at most n? different subtrees between L, and L,,
rooted by vertices with values greater than 1. To each level L, we assign a tuple indicating
for every i € [1,n] whether a vertex in L, has label 7 and value 0 or value 1 and for every
pair (,7) € [1,n]? the index of the vertex in L, of B* that is passed by the path between a
vertex in L,, with label j and value greater than 1 and a vertex in L,, with label 7. There
are at most 227 . p?* < 27" different tuples possible. It follows that there must be two
levels Lg, and Lg,, 1 < s1 < so < r9, with the same assigned tuple. Then, we can delete
levels Lg,,...,Ls,—1 and build a reduced computation tree with root value b that proves

be S(t— (s2 —s1)), which is a contradiction to the assumption that ¢ is smallest possible.

First, observe that B contains a leaf with value greater that 0. Second, for every

r > 2" there is a vertex u in L, such that every vertex in L 3 in the subtree rooted

r—2n
by u has a smaller value than the value of u, and « has value greater than 1. Note that,
if u has value 1, there is a path from an input vertex to u that contains only vertices
with value 1. If 222 L, denotes the sum of the values of the vertices in level L, with
value greater than 1, it holds for every r < ¢ that >.2? L, < Y.2? L,,;. It follows that

222 Ly.s > 2, 222 Ly.5.3 > 3, and so on, so that ¢t <b- on®. m
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Figure 6. Construction of Lemma 38.

We want to make two remarks on the just proven result. The factor b+1 could be
replaced for every b > 1 by b—1, as it is proved. But this would entail an unpleseant case
study between b < 1 and b > 1. Second, {U,®,®} is a maximal set of operations for which
we can bound the number of evaluation steps, since Mg, (U, N, ®, ®) and M, (U,N,~, D, ®)
are undecidable. At first glance, one might argue that undecidability of the latter problem
is due to (the expected) undecidability of the non-iterated variant MC(U, N, ™, ®, ®). How-
ever, every bound for the general problem serves as bound for a restricted variant, hence
M, (U, N, &, ®) would be decidable.

As we have already discussed the problems My, (O) for O C {U,N,”,®,®} can be
considered similar to the problems MC(Q) with succinct input representation. For most of
our problems succinctness led to an increasement of complexity. With this phenomenon in
mind it is surprising that we can show that My, (U, @, ®) is solvable in polynomial space.
It is known that MC(U, ®,®) is PSPACE-complete [16]. To give a short introduction to
the following proof. Consider some recurrent {®}-system S, and let F' be the formula
representation of S(t) for some t > 0. Then, F is also a computation tree, and the value of
the root vertex is determined by the number of paths from leaves to the root vertex. These
numbers can be computed by matrix multiplication as shown in the proof of Proposition 26.
If we may additionally have U- and ®-vertices, not all paths in the formula representation
contribute to the result.

Theorem 39. My, (U,®,®) is in PSPACE.

Proof: Let (S,t,b) be an instance of My, (U, ®,®) where S = (F,A), F = (f1,---, fa),
n =gef dimS, and A = (ay,...,a,). Let Ci,...,C, be the circuit representations of
fiy---sfu. If b < 1 we can evaluate all functions iteratively in the semiring SR(1) and
compute S(¢) N [0,1] in polynomial space. Let b > 1, and let b € S(t). Let F be the
formula representation of S(¢) obtained by unfolding the circuit representation of S(t), and
let T be a computation tree for F' with root value b. Observe the following: any leaf-
root path that does not contain a vertex with value 0 contains at most |logb| ®-vertices
without predecessors with value 1. We will give an algorithm that verifies the existence of
a computation tree for F' with root value b. The main idea is as follows. Let B’ emerge
from T by replacing every ®-vertex of 7' by an input vertex of the same value. (Delete
all vertices that are not accessible from the root.) Obviously, the value of every vertex u
in B’ is the sum of all input vertices in the subtree with root vertex v and is equal to the
value of the corresponding vertex of 7. Now, obtain B from B’ by removing all vertices
with value 0. Then, there are at most b leaves in B, and @®-vertices may have only one
predecessor.

A vertex of B is marked if it corresponds to a vertex that emerged in the circuit
representation of S(¢) from identifying an input and an output vertex. These marked
vertices are additionally labelled with the number of the original input vertex. (Recall
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Figure 1: the right circuit contains two such vertices that emerged from an identification
operation, and they would be labelled with 1 and 2.) We consider the levels of B defined
in the same way as in the proof of Lemma 38, i.e., marked vertex u belongs to level r,
denoted by L,, r € [0,t], if and only if u is contained in the subtree of B of exactly t —r+1
marked vertices. The root vertex of B solely forms L;. With L, we associate an (n+1)-
tuple (v],...,v},,0") where v}, i € [1,n], denotes the number of marked vertices in L, with
label ¢ and ¢ is the sum of the values of all marked vertices in L,.. Note that this sum may
be smaller than b since subtrees with root vertex a ®-vertex have been cut. Our algorithm
will iteratively generate such tuples associated to levels starting from level ¢ and verify
that the difference between the last components of the tuples associated to consecutive
levels is the sum of the values of appropriate computation trees (those that have been cut).
The tuple (0,...,0,1,b) is associated to level t. Let tuple (v],...,v;,,0") associated to
level 7 > 0 be known. We describe how to find a tuple for level r—1. Remember that no
vertex in B has value 0. Let ¢ € [1,n] such that v/ > 0. Decrease v] by 1. The algorithm
guesses how much a copy of a computation tree of the unfolded circuit representation Cj;

of f; contributes to 777! =ge¢ (L. .., v 0"

, i.e., which vertices from L,_; are
contained in a subtree rooted by some marked vertex from L, with label i. Let the vertices
of C; be ordered arbitrarily. In polynomial space we can examine the paths of C; one after
the other. If a path contains a U-vertex, the subtree of exactly one predecessor must be
considered. If a path contains a ®-vertex the value of the ®-vertex at shortest distance
to the output gate must be determined. This vertex then corresponds to a leaf of B that
replaced a ®-vertex in 7T'. This routine is described in the next paragraph. For each &-
vertex u it must be guessed whether it has value 0 or greater than 0. The former case can
be verified in polynomial space as follows. Let f’ be a sub-function of f; that computes
the value of w. (This function is represented by a sub-circuit of C;.) The algorithm simply
verifies (S',7,0) € My, (U, ®, ®) where S’ is obtained from S by adding function f’ as
(n + 1)-th function. If u is decided to have value 0 then the subtree rooted at u does not

71 If u has value greater than 0 all

have to be considered and does not contribute to 7
leaves with value greater than 0 in its subtree contribute to 77~!. The algorithm repeats
this procedure until there is no i € [1,n] such that v/ > 0. Set 0" ~! =gt 0. Tuple 7771
is generated and the algorithm proceeds with this tuple until the tuple associated with
level 0 is obtained. If % ;19 - a; = ¥ then accept. If b & S(t), the existence of no reduced
computation tree with root value b can be proved. It is obvious that the above described

part of our algorithm needs only polynomial space.

It remains to show how to verify the value of a ®-vertex u. Similar to the case of a
@-vertex with value 0, we can verify in polynomial space whether « has value 0 or 1. Let
u1 and wuo be the predecessors of w. If u has value p > 1 then u; must have value p; > 0
and wo must have value po > 0 such that p = p; - ps. It can be verified in polynomial
space as described above whether p; = 1 or p; = 1. If one is true, u is treated as ®-vertex
with one predecessor having value 0. If neither of the cases hold then reduce ¢" by p
and the algorithm verifies (S7,7,p1) € M, (U, ®,®) and then (S5, 7,p2) € M, (U, ®, ®),
where S and 5% emerge from S by adding as (n+1)-th component the subfunctions of f;
computing the values of u; and us, respectively. Hence, the space needed by the algorithm
depends on the number of verifications that are carried out at the same time. It holds
that every additional verification process corresponds to some ®-vertex and these vertices
are contained in one leaf-root path of F. Then, there can be at most |logb| verification
processes running at the same time, since 2 < py,py < % This gives a polynomial space
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bound for the algorithm. n

Theorem 40' Mea:(ua m); Mea:(ua m)_)y Mex(@; ®)7 Mel’(ua 69)7 Mem(ua ®)7 Mem(ua 697 ®)
are PSPACE-complete.

Proof: We first show that M., (U, N, ) is contained in PSPACE. Let (5,b) be an instance of
M, (U,N,7) where S = (F, A), n =ger dim S. There are exactly 2" possible configurations
of F(t) with respect to b. Start the evaluation process of S. If a configuration appears that
has already been encountered there will be no new configuration of S with respect to b.
After 2" evaluation steps all possible configurations that can be generated by S have been
encountered, hence M., (U,N,7) is in PSPACE. Containedness in PSPACE of all other
problems is due to Lemma 38 and Theorem 39.

It is obvious that Mg;(U,N) reduces to Mg, (U,N,7). Let (S,b) be an instance of
Mz (U,N) where S = (F,A) and F = (f1,...,fn), n =ger dimS. Let f/, i € [1,n],
emerge from f; be replacing every N by @ and every U by ®. Let A’ emerge from A by
replacing b by 0 and every other number by 1. Let S" =qer ((f{,..., f}),A"). It holds that
z+y=0<z=y=0andz-y =0 = =0ory = 0. By induction, it follows that b € S(t)
if and only if 0 € S'(t), t € N. Hence, (S,b) € M, (U,N) if and only if (S’,0) € M.,(D, ®).
Similarly, M, (U, N) reduces to My (U, ®) and My (U, ®). n

COI'OllaI'Y 41. th(U7 m); th(U7 na_)y th(®7 ®); th(U7 @)7 th(U7 ®)7 th(U7 697 &
are PSPACE-complete.

Proof: Let (S,b) be an instance of Mgz (U,N), n =qer dim S. Let x =qef (21, ..., ZTpt1), and
let & be the smallest number such that & # b. Add component (f,,11(X) =def Trn, Uxp11,b")
to S and obtain S’. Then, (S,b) € M, (U,N) if and only if (S7,2™,b) € My, (U,N). Since
My, (U, N) reduces to all other problems, the statement holds. ]

9. More complicated problems. In this final section we consider those problems that
we have not yet solved. These are most of the problems that allow N- and ®-operations.
But also My, (U,N, 7, ®) and M, (U,N, ™, ®) are still open. We will not give tight upper
and lower bounds. In most cases, we obtain upper bounds by adequately restate results by
McKenzie and Wagner. However, the complexity of the mentioned problem My, (U,N, ™, ®)
can significantly be improved with respect to the corresponding result from [6]. Let us first
recall some necessary results. The complexity class EXP is the class of all sets that can be
decided in deterministic exponential time; NEXP is its nondeterministic counterpart (see
also [8]). EXPSPACE is the class of all sets that can be decided in exponential space.

Theorem 42. [6] i. MC(N, ®) is in P.

ii. MC(N,®,®) is in coNP.

iii. MC(U,N, ™, ®) and MC(U,N, ™, ®) are in PSPACE.
iv. MC(U,N, ®,®) is NEXP-complete.

Given a recurrent system S and some number ¢, we find a circuit representation of S(t)
by simply concatenating circuits as it was described in the last section. The class 2—NEXP
is the class of all sets A for which there is a polynomial p such that A can be accepted in
nondeterministic time 22”. We obtain the following corollary.

Corollary 43. i. My, (N, ®) is in EXP.
ii. My (N, ®, ®) is in coNEXP.
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iii. My, (U,N,~, &) and My, (U,N,~, ®) are in EXPSPACE.
iv. My (U,N, @, ®) is in 2—=NEXP.

In case of recurrent {U,N,~, ®}-systems we can improve the trivial exponential-space
upper bound.

Lemma 44. My, (U,N,~,®) is in EXP.

Proof: Let (S,t,b) be an instance of My, (U,N,7,®), S = (F,A) and F = (f1,..., fa),
n =qet dim S. Let (4, ..., C, be the circuit representations of fi,..., f,, respectively. Let
v denote the number of vertices in the circuits Cy,...,C),. Then, v is bounded above
by the length of the representation of (S,¢,0). To compute F(i+1) from F(i), i > 0,
means to compute v results (the result on every vertex of each circuit). Hence, S(t) can be
computed using (at most) v -t intermediate results, and at most v of them have to be kept
at the same time. To answer the question whether b € S(t) it suffices to always consider
only numbers not larger than b. Hence, each result can be represented by a sequence of
(at most) b+1 numbers or an appropriate binary string. Given two such representations,
union, intersection, complementation and addition can be computed in ¢ - b2 steps, ¢ > 1
independent of the input. Then, b € S(¢) can be decided in ¢ -t -3 - b* steps, ¢ > 1, which
gives exponential time in the length of the representation of (S,¢,0). n

Observe that My, (U,N) reduces to My, (U,N, ®) and My, (7,®). The latter reduc-
tion is done by replacing N by @, AU B by A @ B, the queried number b by 0 and
every other number by 1. So, My, (U, N, &), My, (7, ®) and My, (U,N,~,P) are PSPACE-
hard. Since the corresponding non-iterative problem versions MC(U, N, ®), MC(—, ®) and
MC(U,N,—, @) are PSPACE-complete [6], [12], we should expect that none of our problems
is in PSPACE. However, we already encountered this effect in case of My, (U, ®,®), which

is PSPACE-complete even though MC(U, ®, ®) is also PSPACE-complete [16].

One easy way to achieve containedness of My, (U, N, ®)—or My, (7, ®)—in PSPACE is
by representing computed sets, i.e., results of {U, N, ®}-functions, efficiently such that the
required operations can also by carried out efficiently. Efficiency in the present case means
polynomial space. Simple representations that may be manipulated in polynomial time do
not suffice, since this would immediately imply containedness of, for instance, MC(U, N, ®)
in P, hence P = PSPACE (if the representation of singleton sets that we start with can be
generated in polynomial time).

Proposition 45. M., (U,N,~, ®) is in EXPSPACE.

Proof: Let (S,b) be an instance of Mg, (U,N, 7, @), n =ger dim S. It suffices to evaluate S
in the semiring SR(b), hence, input and output of the involved functions can be represented
in space polynomial in b. We have n sets and every set can be one out of 2° sets. S can
generate at most 2™ different configurations, i.e., b € [S] if and only if there is t < 2" such
that b € S(¢). This gives a decision algorithm working in exponential space by application
of Lemma 44. [ |

In a way similar to the reduction from My, (U,N) to My, (~,®), the former problem
reduces to My, (7, ®). Replace every U by ® and every ANB by A ® B, replace the queried
number b by 0 and every other number by 1. Note that no {7, ® }-function on inputs only
{0} or {1} can compute (), since no such function can compute a set that contains 0 and 1.
This shows PSPACE-hardness of My, (7, ®).
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Operation set Exact problem My, Existential problem M.,
Lower bound | Upper bound | Lower bound | Upper bound
un- c® NEXP ? RE ?
un SR NEXP 2—NEXP RE
- ®® | PSPACE ? RE | ?
U e PSPACE PSPACE
N ® ® | PSPACE | coNEXP | PSPACE | RE
SR PSPACE PSPACE
un- @ PSPACE EXP PSPACE EXPSPACE
un @ PSPACE EXP PSPACE EXPSPACE
- S PSPACE EXP PSPACE EXPSPACE
U S PSPACE PSPACE
N @ C.L P NP
@ C.L P NP
un- ® PSPACE | EXPSPACE | PSPACE RE
Un ® PSPACE | EXPSPACE | PSPACE RE
- ® PSPACE | EXPSPACE | PSPACE RE
U ® PSPACE PSPACE
N ® NL EXP NP RE
® NL P NP
Uun-— PSPACE PSPACE
Un PSPACE PSPACE
N NL NP
U NL NL
- L L
L L

Table 1. Our results. The question mark stands for Ag or Eg.

10. Conclusions. In this work we introduced finite recurrent systems over the power set
of the natural numbers. We defined two natural problems for these systems. The one of
these problems, the exact membership problem, solves a classical question, if it is restated
in terms of arithmetic circuit: Doesa given circuit generate a given number? In this case the
circuit is given in a concise representation, that is not as succinct as those representations
used for typical succinctness versions of well-studied NP-complete problems. The second
type of problems, the existential membership problems, asks whether a given number can
be generated by a given system. Our systems could be defined via functions that used U,
N, —, @ or ® as operations. We studied the complexities of these problems with respect
to the set of used operations. The results are summarised in Table 1. The question marks
stand for complexity classes beyond the class of recursively enumerable sets.

The exact membership problems can be understood as concise variants of the mem-
bership problems for arithmetic circuits studied by McKenzie and Wagner [6]. In some
cases we could show that our chosen representation does not result in an increment of com-
plexity with respect to the corresponding McKenzie-Wagner problems. In other cases, e.g.,

My (U, @), we could state an increment from NP-completeness to PSPACE-completeness.
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McKenzie and Wagner studied the emptyness problem for some circuits as an auxiliary
problem. It would be interesting to solve the emptyness problem for recurrent {N,®}-
systems. The only systems for which the emptyness problem is not trivial and that we
could solve are recurrent {N}-systems.

As we initially mentioned recurrent systems describe sets of natural numbers. It should
be worth finding characterisations of sets that can be generated by special recurrent sys-
tems. One could also define further set construction rules, for instance, intersection instead
of union. Do complexities change unpredictably?

Historical note. When Volker Diekert was at Wirzburg for a talk in May 2002, he
surprised us with an astounding representation of the Fibonacci numbers using a matrix.
The k-th power of this matrix contained the (k + 1)-th Fibonacci number. Essentially, it
was the example of Section 6.

Acknowledgements. The idea to study finite recurrent systems was the result of a
discussion with Klaus Wagner when a lot of people at Wiirzburg were studying membership
problems for arithmetic circuits. I thank Bernhard Schwarz for his help.
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