
Modeling Markets, Pandemics,
and Peace: The Mathematics of
Multi-Agent Systems
Lecture 2
How computers learn

MIT HSSP
July 9th, 2022 (Starting 1:05 PM)

𝑣! 𝑠" = 𝔼! %
#$%

&

𝑅"'#'(|𝑆 = 𝑠"

• Our life is easier when states are Markovian (the future depends only on the current
state and not the past)

• Bellman's equation:

• Optimal value function:

Recap of RL

Agent Environment

action at

state st

reward rt

rt+1 st+1

= 𝑟 𝑠", 𝑎" + 𝔼[𝑣! 𝑠"'(]

𝑣∗ 𝑠 = maximize!(𝑣! 𝑠)

• Policy π: S ⟶ A such that at = π(st)

• Agent's goal = find policy that
maximizes total reward

π

Today

Agent Environment

action at

rt+1 st+1

state st

reward rt

π

1. How do we
represent and learn 𝝅
using a computer?

Estimating the optimal value function

“If I know the shortest
path from Boston to
DC runs through New
York, then once I get to
New York, I should just
follow the shortest path
from New York to DC.”

Bellman’s equation
Current state of player 1

Player 2
minimizes

Player 1
maximizes

Rewards5 64 7 9 7 5 8

5 9 7 8

5 7

7𝑣∗ 𝑠 =

Today

Agent Environment

action at

rt+1 st+1

state st

reward rt

π

1. How do we
represent and learn 𝝅
using a computer?

2. How do we figure out the
behavior of the environment
if it is not given to us?

𝑣∗ 𝑠 = maximize!(𝑣! 𝑠)

𝑣! 𝑠" = 𝔼! %
#$%

&

𝑅"'#'(|𝑆 = 𝑠"

There are two dominant methods in
reinforcement learning:

(a) Learn 𝛑 directly, trying out different
policies to maximize reward (policy
gradient method)

(b) Learn the state-action value function
Q (Q-learning)

What is machine learning?

3.5 billion years of
natural selection

Low-complexity organism High-complexity organism

pi_net = nn.Sequential(
nn.Linear(obs_dim, 64),
nn.Tanh(),
nn.Linear(64, 64),
nn.Tanh(),
nn.Linear(64, act_dim)

)

Low-complexity program

Machine learning

High-complexity program

The simplest example of machine learning

x

y

Which is the
line of best fit?

8𝑦 = 𝑚𝑥 + 𝑏

The simplest example of machine learning

x

y

We want to find a line, defined by 𝑚
and 𝑏, that “best fit” our data.

Define “best fit” as the line that
minimizes the average squared
length of the dotted lines:

𝐿 =
1
𝑛&
!"#

$

𝑦! −)𝑦! %

“Loss”

=
1
𝑛&
!"#

$

𝑦! −𝑚𝑥! − 𝑏 %

8𝑦 = 𝑎𝑥* + 𝑏𝑥+ + 𝑐𝑥, + 𝑑𝑥- + 𝑒𝑥 + 𝑓

Fitting more complicated curves

x

y

Find parameters {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} such that 𝐿 = -
.
∑/0-. 𝑦/ − /𝑦/ 1 is minimized

Fitting more complicated curves

Find parameters {𝑤-, 𝑤1, 𝑤2, … , 𝑤.} such that 𝐿 = -
.
∑/0-. 𝑦/ − /𝑦/ 1 is minimized

How do we find the optimal parameters?

x

y

Data Loss

8𝑦 = 𝑚𝑥 + 𝑏

𝑚 𝑏

The gradient descent algorithm

𝑤ABC = 𝑤A − 𝛾∇𝐿(𝑤A)𝑤$&#
𝑤$

𝛾∇F(𝑤$)

New configurations Old knob configurations

Direction of steepest
descent

Learning rate

The gradient descent algorithm

Animations courtesy of Lili Jiang

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Time for an upgrade

x =
1.2
4.6
9.5

𝑦 = −9.413
0.895

𝑓(𝑥)

8𝑦 = 𝑚𝑥 + 𝑏

𝑚 𝑏

Neural networks are large, arbitrary function approximators

Neural networks are large, arbitrary
function approximators

x =
1.2
4.6
9.5

𝑦 = −9.413
0.895

𝑓(𝑥) Weights and biases

𝑓(𝑥)

Data Loss

𝑤.'(= 𝑤. − 𝛾∇𝐿(𝑤.)
Gradient descent

How machines learn

Tweak the knobs
{𝑤#, 𝑤%, 𝑤', … , 𝑤$}

Representing the policy function

Agent Environment

action at

rt+1 st+1

state st

reward rt

π

Policy π: S ⟶ A such that at = π(st)

𝑎" = 𝜋(𝑠")

Data Loss

𝑤.'(= 𝑤. − 𝛾∇𝐿(𝑤.)
Gradient descent

Representing the policy function

𝑎"𝑠" ???

Tweak the knobs
{𝑤#, 𝑤%, 𝑤', … , 𝑤$}

𝑎" = 𝜋(𝑠")

Data Environment

𝑤.'(= 𝑤. + 𝛾∇𝐿(𝑤.)
Gradient ascent

Tweak the knobs

Representing the policy function

𝑎"𝑠"

{𝑤#, 𝑤%, 𝑤', … , 𝑤$}

𝐿 = 𝔼! %
"$%

/0(

𝑅"'(

Objective
= 𝑣!(𝑠%)

Math ahead!
(feel free to ignore for one slide)

The policy gradient algorithm

𝑤.'(= 𝑤. + 𝛾∇𝐿 𝑤. ,Tweak the knobs on the neural network using

∇1𝐿(𝑤.) = ∇1 𝔼 ∑"$%/0(𝑅"'(|𝜋1 = ∑"$%/0(∇1 P 𝑠", 𝑎" 𝜏 𝑟"'(= ∑"$%/0(P(𝑠", 𝑎"|𝜏)
∇!3(5",7"|9)
3(5",7"|9)

𝑟"'(

𝐿 = 𝔼 &
(")

*

𝑅(&#|𝜋+

= ∑"$%/0(P(𝑠", 𝑎"|𝜏) log ∇1P(𝑠", 𝑎"|𝜏) 𝑟"'(~ ∑"$%/0(log ∇1P(𝑠", 𝑎"|𝜏) 𝑟"'(

𝑑
𝑑𝑥
log 𝑓 𝑥 =

𝑓′(𝑥)
𝑓(𝑥)Using Approximating one trial during training

= ∑"$%/0(∇1 log 𝜋1 (𝑠", 𝑎")∑"#$"'(
/ 𝑅";

(we now have a gradient on 𝜋! Presenting…
the REINFORCE algorithm)

…

The policy gradient algorithm (REINFORCE)

𝑤.'(= 𝑤. + 𝛾%
"$%

/0(

∇1 log 𝜋1 (𝑠", 𝑎") %
"#$"'(

/

𝑅";

Tweak the knobs on
our policy network

By going in the direction of steepest ascent
in the logarithm of the policy probability

Weighted by the total reward
obtained in that trajectory

Agent Environment

action at

state st

reward rt

1) Use a neural network to represent the policy π
2) For every trajectory (trial), try out that policy and
record the rewards you get
3) Tweak the knobs on π using REINFORCE

But there are problems!

𝑤.'(= 𝑤. + 𝛾%
"$%

/0(

∇1 log 𝜋1 (𝑠", 𝑎") %
"#$"'(

/

𝑅";𝔼[]

Starting 𝑠% Tally 𝑅"

Tally 𝑅"

Tally 𝑅"

1) Each trajectory can differ greatly
from another, resulting in highly
variable policies

2) We aren’t necessarily sampling the
whole space of trajectories, causing
the distribution to skew towards a
non-optimal direction

3) On-policy learning can be
expensive! We would like to re-use
old experiences.

Back to big picture

Agent Environment

action at

rt+1 st+1

state st

reward rt

π

1. How do we
represent and learn 𝝅
using a computer?

2. How do we figure out the
behavior of the environment
if it is not given to us?

𝑣∗ 𝑠 = maximize!(𝑣! 𝑠)

𝑣! 𝑠" = 𝔼! %
#$%

&

𝑅"'#'(|𝑆 = 𝑠"

There are two dominant methods in
reinforcement learning:

(a) Learn 𝛑 directly, trying out different
policies to maximize reward (policy
gradient method)

(b) Learn the action-value function (Q-
learning)

𝑞! 𝑠", 𝑎" = 𝔼! %
#$%

&

𝑅"'#'(|𝑆 = 𝑠", 𝐴 = 𝑎"

𝑣! 𝑠" = 𝔼! %
#$%

&

𝑅"'#'(|𝑆 = 𝑠"

Action-value function

The state-value function assigns a value to each state:

𝑣∗ 𝑠 = max"(𝑣" 𝑠)

Similarly, we can define the action-value function:

𝑞∗ 𝑠, 𝑎 = max!(𝑞! 𝑠, 𝑎)

= 𝑟 𝑠", 𝑎" + 𝔼[𝑣! 𝑠"'(]

= 𝑟 𝑠", 𝑎" + 𝔼[𝑞! 𝑠"'(, 𝑎"'(]
Idea: learn this instead of 𝜋∗(𝑠)

Deep Q-network (DQN)

𝑄∗(𝑠, 𝑎)

𝑄∗(𝑠, 𝑎()

𝑠

𝑄∗(𝑠, 𝑎-)

𝑄∗(𝑠, 𝑎,)Compute action-values for each
possible action from state 𝑠

Agent picks action

𝑎 = max-𝑄∗(𝑠(𝑎)

𝑄(𝑠, 𝑎)

Data

𝑤.'(= 𝑤. − 𝛾∇𝐿(𝑤.)
Gradient descent

Tweak the knobs

Deep Q-learning

𝑠"

{𝑤#, 𝑤%, 𝑤', … , 𝑤$}

Environment

Loss

𝑎(= max-𝑄(𝑠(𝑎)

???

Deep Q-learning loss

𝐿 =
1
𝑛
&
!"#

$

𝑦! −)𝑦! %

Recall that one popular loss objective is to minimize the “average of the squared errors”

In Q-learning,
𝐿 = 𝔼 (𝑄∗(𝑠", 𝑎") − 𝑄(𝑠", 𝑎"))-

“Estimate”“Actual”

But we don’t know actual 𝑄∗(𝑠", 𝑎")!
Instead, we assume 𝑄~ 𝑄∗ and compute target value using Bellman equation:

𝐿 = 𝔼 (𝑄"7<=>" − 𝑄(𝑠", 𝑎"))-

𝑄"7<=>" = 𝑟" +max7𝑄(𝑠"'(, 𝑎)

𝑄(𝑠, 𝑎)

Data

𝑤.'(= 𝑤. − 𝛾∇𝐿(𝑤.)
Gradient descent

Tweak the knobs

Deep Q-learning

𝑠"

{𝑤#, 𝑤%, 𝑤', … , 𝑤$}

𝐿 = 𝔼 (𝑄"7<=>" − 𝑄(𝑠", 𝑎"))-

Environment

Loss

𝑄"7<=>" = 𝑟" +max7𝑄(𝑠"'(, 𝑎)

𝑎(= max-𝑄(𝑠(𝑎)

Is this the best way to
select the action?

k-armed bandit problem

…

𝑝(𝑝- 𝑝#

For machine 𝑖, you get $1 with probability 𝑝? and $0 with probability 1 − 𝑝?.
The probabilities are hidden.
You get to play 100 times and want to win as much $$ as possible.

What do you do?

Exploration vs. exploitation trade-off

The RL agent needs to decide whether to exploit what they know or explore a random action

Too much exploitation (i.e. always select best known action 𝑎" = max7𝑄(𝑠" 𝑎))
⟹ can get stuck in greedy suboptimal policy

Too much exploration (i.e. always select random action 𝑎")
⟹ not utilizing prior information

Simple fix: use 𝜖-greedy selection: 𝑎" = [
random action with prob. 𝜖
max7𝑄 𝑠" 𝑎 with prob. 1 − 𝜖

𝑄(𝑠, 𝑎)

Data

𝑤.'(= 𝑤. − 𝛾∇𝐿(𝑤.)
Gradient descent

Tweak the knobs

𝜖-greedy deep Q-learning

𝑠"

{𝑤#, 𝑤%, 𝑤', … , 𝑤$}

𝐿 = 𝔼 (𝑄"7<=>" − 𝑄(𝑠", 𝑎"))-

Environment

Loss

𝑄"7<=>" = 𝑟" +max7𝑄(𝑠"'(, 𝑎)

𝑎(= Q
random action with prob. 𝜖
max-𝑄 𝑠(𝑎 with prob. 1 − 𝜖

DQN convergence problem
Gradient descent theory requires that training data is “independent and identically distributed”
(i.i.d.) for it to converge

We can break this correlation by
introducing random sampling

But sequential experiences are
often highly correlated

Experience replay

Define the agent’s experience at time 𝑡 by 𝑒" = (𝑠", 𝑎", 𝑟"'(, 𝑠"'()

Replay memory

𝑒(, 𝑒(.#, …, 𝑒(./

Store last N experiences

For 𝑄(𝑠, 𝑎) training:
1) Randomly sample batch of 𝑚 experiences from replay memory
2) Update 𝑄(𝑠, 𝑎) via gradient descent
3) Repeat 1-2 until convergence

𝜖-greedy deep Q-learning with experience replay

Replay memory
𝑒$, 𝑒$%&, …, 𝑒$%'

{𝑤&, 𝑤(, 𝑤), … , 𝑤*}

𝑄(𝑠, 𝑎)

𝑤*+& = 𝑤* − 𝛾∇𝐿(𝑤*)
Gradient descent

Tweak the knobs
𝐿 = 𝔼 (𝑄$,-./$ − 𝑄(𝑠$, 𝑎$))(

Environment

Loss

𝑄$,-./$ = 𝑟$ +max,𝑄(𝑠$+&, 𝑎)

𝑎$ = 8
random action with prob. 𝜖
max,𝑄 𝑠$ 𝑎 with prob. 1 − 𝜖𝑠$

Current
trajectory

𝑒0, 𝑒1, …, 𝑒2
Random sample

But there are other problems (again)!

1) Can’t learn stochastic policies (i.e. probability distribution over actions)
2) Hard to deal with continuous action spaces
3) Usually slower than policy gradient

Can we… maybe… combine the two? 🥺👉👈

𝑄∗(𝑠, 𝑎)

𝑄∗(𝑠, 𝑎#)

𝑠

𝑄∗(𝑠, 𝑎%)

𝑄∗(𝑠, 𝑎')

Agent picks action

𝑎 = max,𝑄∗(𝑠$ 𝑎)

Policy gradient + Q-learning = Actor-critic

Figure credits: Shaked Zychlinski

https://towardsdatascience.com/qrash-course-ii-from-q-learning-to-gradient-policy-actor-critic-in-12-minutes-8e8b47129c8c

Improving policy gradient

𝑤.'(= 𝑤. + 𝛾%
"$%

/0(

∇1 log 𝜋1 (𝑠", 𝑎") %
"#$"'(

/

𝑅";

Tweak the knobs on
our policy network

By going in the direction of steepest ascent
in the logarithm of the policy probability

Weighted by the total reward
obtained in that trajectory

𝑄(𝑠", 𝑎")

• Lower variability in training (random events in the world don’t affect our review of what happened)
• More efficient use of data: instead of re-running each trial, we can use experience captured by Q
• As our evaluation of Q gets better, our policy gradient gets better!

𝑄(𝑠, 𝑎)

Data

𝑤.'(= 𝑤. + 𝛾∇𝐿(𝑤.)
Gradient ascent

Tweak the knobs

Improving deep Q-learning

𝑠"

{𝑤#, 𝑤%, 𝑤', … , 𝑤$}

Environment

Loss

𝑎(= Q
random action with prob. 𝜖
max-𝑄 𝑠(𝑎 with prob. 1 − 𝜖

Policy network

Better estimate

𝐿 = 𝔼 (𝑄"7<=>" − 𝑄(𝑠", 𝑎"))-
𝑄"7<=>" = 𝑟" +max7𝑄(𝑠"'(, 𝑎)

The best of both worlds

Figure credits: Shaked Zychlinski

Better estimates of Q

Better policies

https://towardsdatascience.com/qrash-course-ii-from-q-learning-to-gradient-policy-actor-critic-in-12-minutes-8e8b47129c8c

Next time

Lecture 1

Introduction and
the RL problem

Lecture 2

How computers
learn

Lecture 3

How people learn

Lecture 4

Multi-agent
systems

Lecture 5

Interactions on
graphs

Lecture 6

Complex systems
science

• Humans as RL agents
• Utility theory
• Behavioral economics

• Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto
• Deep Learning video series by 3Blue1Brown
• RL video series by deeplizard (specifically videos on Q-learning & experience replay)
• Medium article Qrash Course II: From Q-Learning to Gradient Policy & Actor-Critic in 12

Minutes

References and additional resources

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://www.youtube.com/watch?v=nyjbcRQ-uQ8&list=PLZbbT5o_s2xoWNVdDudn51XM8lOuZ_Njv
https://towardsdatascience.com/qrash-course-ii-from-q-learning-to-gradient-policy-actor-critic-in-12-minutes-8e8b47129c8c

