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1 Topologies

Before we discuss what a topology is, it is instructive to remember a topology we’re already somewhat
familiar with.

1.1 Intervals of the Real Line

We begin with an example from R. We define open and closed intervals of R as follows:

(a, b) := {x : a < x < b} we call this an open interval

[a, b] := {x : a ≤ x ≤ b} we call this a closed interval

note that the union and intersection of two overlapping open or closed intervals is again a interval of the
same type. However, we can have a infinite intersection of intervals of one type which gives the other type
of interval. Namely, consider the intersection of all open intervals containing the closed interval [0, 1]:⋂

a<0, b>1

(a, b)

this gives us [0, 1] itself, which is closed. We are now ready to define a topology.

1.2 Topology on a Set

A topology T on a set X is a subset of its power set, T ⊂ P (x) satisfying the following three conditions:

• ∅, X ∈ T

• ∀S ⊂ T : (
⋃
U∈S U) ∈ T

• ∀U1, . . . , Un ∈ T : (
⋂i=n
i=1 Ui) ∈ T

note that even an infinite union of (intersecting) open intervals of the real line is again an open interval,
which agrees with our definition of a topology.

We call a subset U ⊂ X open if U ∈ T.

1.3 Topological Basis

Definition: A subset B ⊂ T is called a basis if every element of T is the union of some subset of B.
Symbolically:

∀U ∈ T ∃CU ⊂ B : U =
⋃

B∈CU

B

Given a Basis B on X, a subset U ⊂ X is open if and only if: ∀x ∈ U∃B ∈ B : x ∈ B ⊂ U
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1.4 Standard Topology on R
We now define the standard topology on R as the topology with all open intervals as a basis. Notice that
in the topology the interval (a,∞) := {x : x > a} is open, because (x,∞) =

⋃
b>a(a, b), the same holds for

(∞, a) = {x : x < a}.

2 Basic Topological Notions

Having defined a topology, we are now ready to discuss some of the fundamental topics of topology.

2.1 Product Topology

Given two sets A,B with respective topologies TA,TB , we define the product topology as:

A×B = {(a, b) : a ∈ A, b ∈ B} this is the underlying set

TA×B is the topology with basis B = {U × V : U ∈ TA, V ∈ TB}

Note that TA×B 6= TA × TB . For example two overlapping squares in R2 is an element of TR×R but not
of TR × TR: We can thus define the product topology on Rn for all natural numbers n. We write its basis
elements as

n∏
i

Ui =

n∏
i

(ai, bi)

2.2 Comparing Topologies

Given two topologies T,T′ on the same set X, we say that T′ is finer than T if T ⊂ T′. The idea being that
in this case everything open in T is also open in T′, while there are also some more sets open in T′, which
gives the topology T′ a more detailed texture.

If a set X has topologies T and T′ with respective basis B and B′ such that for each x ∈ X and every
B ∈ B with x ∈ B we have a B′ ∈ B′ satisfying x ∈ B′ ⊂ B then T ⊂ T′. Because let U ∈ T, then since U
is open and B is a basis for T, for each x ∈ U we can choose Bx ∈ B such that x ∈ Bx ⊂ U then for each
Bx choose B′x ∈ B′ such that x ∈ B′x ⊂ Bx so that we get U =

⋃
x∈U B

′
x (since the union of subsets is also

a subset, and ∀x ∈ U : x ∈ B′x) and thus U is open in T′ and T ⊂ T′ as desired.

2.3 Closed Sets

We call a set C ⊂ X closed if C = X −U for some open set U ∈ T i.e. if its complement Cc is open. Notice
that the closed interval [a, b] is in fact a closed set, because [a, b] = R− ((∞, a) ∪ (b,∞)).

We define the closure A of a set A ⊂ X as the set A = {x ∈ X : ∀U ∈ T : x ∈ U =⇒ U ∩ A 6= ∅}. We
will show that (a) A ⊂ A, and (b) A is closed, so that this is the smallest closed set containing A, hence the
name.

(a) if a ∈ A and a ∈ U then a ∈ A ∩ U so a ∈ A and thus A ⊂ A

(b) We have ∀y ∈ X − A ∃Uy ∈ T : y ∈ Uy, Uy ∩ A = ∅ but this also gives that Uy ∩ A = ∅, for assume by
way of contradiction that z ∈ Uy ∩ A then z ∈ Uy and Uy ∩ A = ∅, so in fact z 6∈ A. Thus we obtain
X −A =

⋃
y 6∈A Uy which is a union of open sets and thus open.

Example: (0, 1) = [0, 1] because if 0 ∈ (a, b) then b > 0 assume for simplicity that b < 2 and so
b
2 ∈ (0, 1)∩ (a, b), so that this intersection is nonempty. However, if x < 0 then (2x, x2 )∩ (0, 1) = ∅. A similar
argument holds for 1.

There exists sets that are both open and closed. We call such a set clopen. For example in every topology
both the empty set and the whole set are clopen. In fact a connected space is exactly a space where only
these two are clopen.
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3 Metric Spaces

We now consider another, more familiar type of topological space. Those which depend on a notion of
distance.

3.1 Definition

We define a metric as a function d(x, y) into R satisfying these three conditions:

• d(x, y) = 0 exactly when x = y

• for any x, y we have d(x, y) = d(y, x)

• for any x, y, z we have d(x, z) ≤ d(x, y) + d(y, z)

We can think of a metric as a function which gives the distance between two points. These three conditions
state that (1) the only things with no distance between them are a thing and itself, (2) distance doesn’t
depend on which direction you’re going, and (3) distance can’t be decreased by stopping at a third point
along the way.

Example 1. d(x, y) on R defined by d(x, y) = |x− y|

Example 2. d(x, y) on Rn defined by d(x, y) = |x− y| =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

3.2 ε-balls

An ε-ball Bε(x) around a point x in a metric space X is the set of all points within ε of x for some real
number ε > 0. I.e. Bε(x) = {y : d(x, y) < ε}.

Thus, a metric d(x, y) induces a topology on a set X, which is given by the basis of all ε-balls i.e.
B = {Bε(x) : x ∈ X, ε > 0 ∈ R}.

Example 3. The standard topology on R is given by the standard metric d(x, y) = |x − y| on R, because
(a, b) is the ε-ball around a+b

2 with radius b−a
2 .

3.3 Equivalent topologies on Rn

We can use our theorem about basis to show that the two topologies on Rn are equivalent. Given an ε-ball
Bε(x) and a point y ∈ Bε(x), we can find a basis element of the product topology contained in Bε(x).
Namely we take δ = (ε−d(x, y))/n, and take the basis element

∏n
i=1(yi− δ, yi+ δ). Conversely, gives a basis

element B =
∏n
i=1(ai, bi) in the product topology, and an element x ∈ B, we can find an ε-ball contained in

B. Namely, we take ε = Min{|xi−ai|, |xi− bi|} i.e. the smallest distance from a coordinate of x to the edge
of an interval, and then take Bε(x). By the way we have chosen ε we must have the desired containment.
Since we have containment both ways, we have equality.

4 Infinite Dimensional Topologies

We now come to the main definitions which we will be using: the topologies on infinite dimensional real
space Rω, consisting of all lists of countably many elements of R e.g. (π, 4.873,−e, 101.10010, . . .) and any
other such objects.

4.1 The Box and Product Topologies

We could define the topology on Rω naively as the topology with basis of all products of open sets in R.
Namely B = {

∏
i∈N Ui : Ui ∈ TR} . This is similar to the product topology in the finite case. We call this

the box topology. As we will soon see, unlike the finite case, this is not necessarily the most natural topology
to put on Rω.

3



Alternatively, we could put a restriction on the above basis, and only include things with finitely many
proper subsets of R. So that U ∈ B is equal to R for all but finitely many Ui. or symbolically

B =

{
i=n∏
i=1

Ui ×
∏
i∈N

R : Ui ∈ TR

}
here the product is not necessarily ordered as written.

we call this the product topology on Rω.

4.2 The Uniform Topology

We now define the metric topology on Rω. The first issue to deal with is the possibility that the distance be-
tween two points in Rω might be too large. For example if we consider the distance between 0 = (0, 0, 0, 0, . . .)
and N = (0, 1, 2, 3, . . .), if we were to use some simple metric this distance would probably be infinite. And
so we introduce the notion of a bounded metric.

To begin, we define the standard bounded metric on R as d(x, y) = min{d(x, y), 1}. This is similar to
the standard metric, except that it only takes on values in the interval [0, 1] ⊂ R. This is a metric, since
the first two properties follow from the fact that they hold for the standard metric, and we need only be
concerned that we might not have d(x, z) ≤ d(x, y) + d(y, z) in the case that 2 > d(x, z) > 1. But even here,
the third property of a metric holds rather trivially. Additionally, d defines the same metric topology as d,
as you can check.

Now that we have bounded our metric on R, we are ready to extend it to Rω. We define, for a subset
S ⊂ R the supremum of S, denoted sup(S) as the least x ∈ R : ∀y ∈ S, y ≤ x. So, for two points x, y ∈ Rω
we define the set S of component-wise distances S = {d(xi, yi) : i ∈ N}. Finally, using this, we can define
the uniform metric on Rω as ρ(x, y) = sup(S) = sup{d(xi, yi) : i ∈ N}. This gives us a third topology on
Rω, which we call the uniform topology.

4.3 Comparing Infinite Topologies

These three topologies relate to each other in precisely the following way:

Box ) Uniform ) Product

Proof: (Uniform ( Box): let U =
∏
i∈N(−1n ,

1
n ) then since (−1n ,

1
n ) is open in R for any n, this product

is open in the Box topology. However, for any ε > 0 there is some n ∈ N so that 1
n < ε and thus U fails to

contain any ε-ball. And thus U , while open in the box topology, fails to be open in the uniform topology.
Thus we have Uniform 6⊃ Box. However, given a basis element Bε(x) in the uniform topology, we can simply
choose U =

∏
i∈N(xi − ε/2, xi + ε/2) (dividing by 2 is required for the odd edge case where the xi approach

the distance ε, so that the supremum ends up bigger than any individual distance, but this point is not
particularly central), so that U is contained in Bε(x). Giving Uniform ⊂ Box, as desired.

(Product ( Uniform): for a basis element B in the product topology, there are only finitely many (ai, bi)
in the product not equal to the whole of R. So we can simply choose ε = min{ bi−ai2 }, giving us the smallest

radius of any term in the product giving B, then we have Bε(x) ⊂ B where xi = ai+bi
2 for Ui 6= R and xi = 0

otherwise. So this gives us Product ⊂ Uniform. Conversely, consider B1(0), which is a basis element in the
uniform topology. There is clearly no basis element in the product topology contained in it, this gives us
Product 6⊃ Uniform.

5 Closure of Sequences that are Eventually Zero

We now look at a special subset of Rω, and consider its closure in the above topologies. We define R∞ ⊂ Rω
as the set of elements in Rω with only finitely many nonzero entries. We consider R∞ in the box, product
and uniform topologies.
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5.1 The Box Topology

As per usual, we trivially have that R∞ ⊂ R∞. We show that this is in fact all of R∞, or rather that
R∞ is already closed in the box topology. Choose any y ∈ Rω such that y 6∈ R∞, then we can choose
U =

∏
(yi − |yi2 |, yi + |yi2 |) so that 0 6∈ Ui and thus U ∩ R∞ = ∅ so that y 6∈ R∞ and R∞ = R∞.

5.2 The Product Topology

Let y ∈ Rω be anything, then y ∈ R∞. For, consider any open set U containing y, then Ui = R for all but
finitely many i, so that 0 6∈ Ui for at most finitely many i. Let x ∈ R∞ be defined as xi = yi when Ui 6= R
and xi = 0 whenever Ui = R. We thus have x ∈ U ∩ R∞ so that y ∈ R∞ for all y ∈ Rω, and R∞ = Rω, as
desired.

5.3 The Uniform Topology

In the uniform topology, the closure of sequences which are eventually zero is exactly sequences that converge
to zero. Let y ∈ Rω be such that as i→∞ we get yi → 0 (for example yn = 1/n), and let U be an open set
in the uniform topology containing y. By definition of basis, there is some B ∈ B : y ∈ B ⊂ U . But these
basis elements are of the form Bε(y). Then by the definition on convergence we have ∀ε > 0∃n ∈ N : i >
n =⇒ |yi| < ε. In particular, for some n ∈ N for every i > n we get di(yi, 0) < ε. So define x as xi = yi for
i ≤ n and xi = 0 for i > n then x ∈ Bε(y) ∩R∞ but since B ⊂ U we also have x ∈ U ∩R∞ so that y ∈ R∞.

Conversely, suppose that y ∈ R∞ does not converge to 0. This means, by the contrapositive of the above,
that ∃ε > 0∀n ∈ N : ∃i > n : yi > ε. Taking such epsilon, we choose the neighborhood around y given by
B = B ε

2
(y) so that there are infinitely many Bi with 0 6∈ Bi and thus B ∩ R∞ = ∅ and y 6∈ R∞.

5.4 Conclusion

Although it is essentially possible to imagine that R∞ is already closed, or that its closure is everything in
Rω. Since the three topologies on Rω all agree on Rn, we are in some sense free to choose which topology
we’d like to put on Rω. And it can be seen as most sensible that the closure of R∞, i.e. the things that are
very close to it, should be exactly the things that approach R∞ indefinitely.
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