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Definition 1.0.0. The Definition of λ Calculus

• Let Λ be the set of all valid expressions in λ Calculus.

• Let x ∈ A mean that x is a member of the symbol-space (alphabet) A.

• Let e ∈ Λ mean that e is a valid expression in the set of all valid λ Calculus expressions.

∀x ∈ A. x ∈ Λ ∀x ∈ A, ∀M ∈ Λ. λx.M ∈ Λ ∀M,N ∈ Λ. (M N) ∈ Λ

We can also define λ Calculus expressions like so:

e ::= x | (λx.e) | (e e)

Exercise 1.0.1. Determine whether the following are valid λ Calculus expressions:

λx.x λa.b x.x λλ.λ λx.h e l l o w o r l d

λx.λy.x+ y λx λλ.x λ.. λh.λe.λl.λo.λw.λr.λd.h e l l o w o r l d

Definition 1.1.0. The Definition of a Combinator

• Let x ∈ A. x is a closed variable IFF is attached to a λ expression.

• Let y ∈ A. y is a free variable IFF is not a closed variable.

• Let e ∈ Λ. e is a combinator IFF all variables in e are closed variables.

Exercise 1.1.1. Determine whether the following are valid combinators:

λx.x λy λx.λy.y λx.h e l l o w o r l d

λx.y λa.b λb.λa.a b λh.λe.λl.λo.λw.λr.λd.h e l l o w o r l d

1



Lemma 2.0.0. α Equivalence

• Let λx.M [y] represent an expression where all instances of x in M are replaced with
the expression y.

(λx.M [x])⇒ (λy.M [y])

Do not to replace variables with symbols already in use in your expression.

Exercise 2.0.1. Determine whether the following are valid uses of α equivalence:

λx.λy.x⇒ λy.λy.y λx.λy.y ⇒ λa.λy.y λi.λj.i j j ⇒ λk.λj.j k k

λx.x⇒ λf.f λf.f ⇒ λff.(f f) λa.λb.a⇒ λx.λy.x

Lemma 2.1.0. β Reduction

• Let λx.M [y] represent an expression where all instances of x in M are replaced with
the expression y.

(λx.M [x])E ⇒ (M [x ::= E])

Exercise 2.1.1. apply the β reduction rules to the following expressions. Show your work!

1. (λw.w) (λx.x) (λy.y) (λz.z)

2. (λx.λy.y) (λa.λb.b) (λf.λg.f)

3. (λf.λx.f x) (λx.x) (λf.λx.f (f (f x)))
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Church Encodings of truth values:

• Let True ::= λx.λy.x

• Let False ::= λx.λy.y

Logic operators on the encodings:

• Let Not ::= λx.x False True

• Let And ::= λx.λy.x y False

• Let Or ::= λx.λy.x True y

• Let IfThenElse ::= λx.λy.λz.x y z

Exercise 3.0.0. Simplify the following logical statements, first by expressing the leftmost
expression in λ Calculus, and then reducing the expressions.

1. (Not True False True)

2. (And (Or False True) True)

3. (IfThenElse True False True)

3



Church Encodings of Integers

• Let Zero ::= λf.λx.x

• Let One ::= λf.λx.f x

• Let Two ::= λf.λx.f (f x)

• Let Three ::= λf.λx.f (f (fx))

• Let Four ::= λf.λx.f (f (f (f x)))

• Let Five ::= λf.λx.f (f (f (f (f x))))

• ...

Mathematical Operators:

• Let Add ::= λm.λn.λf.λx.m f (n f x)

• Let Mult ::= λm.λn.λf.m (n f)

• Let Exp ::= λm.λn.n m

• Let Succ ::= λn.λf.λx.f (n f x)

• Let Pred ::= λn.λf.λx.n(λg.λh.h(gf))
(λu.x) (λu.u)

• Let Sub ::= λm.λn.n Pred m

Exercise 4.0.0. Simplify the following mathematical statements by reducing them in λ
Calculus.

1. (Mult Zero Two)

2. (Add Three (Succ One))
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Definition 5.0.0. Definition of the Y Combinator

Y ::= λf.(λx.f(xx)) (λx.f(xx))

Exercise 5.0.1. Let FOO ::= λf.λn.λm.isZero n m (f (Pred n) (Succ m))
Simplify the following recursive function call. Don’t worry about decoding every expression.
If something is obvious, such as (Pred Three), then you don’t need to show that step fully.
Remember that isZero ::= λn.n (λx.False) True

Hint: You can give some expression a name to simplify your work. I recommend using
the following simplification: RecF ::= (λx.FOO (x x))(λx.FOO (x x)). Knowing what this
does will make this evaluation significantly easier.

• ((Y FOO) Two Three)

Does this function remind you of any other function we have studied?
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