An Introduction to Proof-based Mathematics
Harvard/MIT ESP: Summer HSSP
Isabel Vogt

Syllabus

1. Logistics

Class dates: July 10th, 2011 - August 21st, 2011
MIT Building 4, Room 153
My email adress: ivogt@college.harvard.edu

2. Course Description

This course will strive to provide an introduction to the fields of abstract
algebra, finite geometry, and number theory which rely upon the mathe-
matical cornerstone of proving theorems. In the process of learning about
these interesting areas of math seldom touched upon in high school we will
cultivate proof strategies.

The course will be structured with 45 minutes of interactive lecture-style
presentation of material, 30 minutes of mediated group work on proving
theorems, and then 45 minutes of lecture to wrap up. I plan on showing a
couple of interesting mathematical video clips in class.

There is no required homework in the class, but I will be giving out a few
optional ”challenge problems” each week. These will be fun extrapolations
on class material that will focus less on enforcing what was taught that
week, and more on pushing you to make interesting connections of your
own. These are, again, entirely optional, but I will hand out solutions to
those of you who choose to do them the next week.

3. Weekly Breakdown

e July 10th: Introductions, mathematical nomenclature and negation,
constructing proofs, finite and infinite sets, binary operations

e July 17th: Introduction to groups: group axioms, permutations,
group order, cyclic groups, Abelian groups

e July 24th: Isomorphisms, subgroups, group automorphism, symme-
try groups

e July 31st: Fields: field axioms, finite fields, Z,, field extensions



e August 7th: Finite Geometry: finite affine geometry, arithmetic in
finite geometry

e August 14th: Elementary Number Theory: properties of integers,
factorization, primes, congruences, Fermat’s little theorem

e August 21st: Congruences continued, Selected diophantine equa-
tions, Chinese remainder theorem, Fermat’s last theorem

4. BTEX

LaTeX is a user-friendly typesetting software especially designed to typeset
math. I highly recommend downloading LaTeX and learning it. I am happy
to help anyone create their first documents.

LaTeX can be downloaded for free:

e Windows Users: MikTex: http://miktex.org/

e Mac Users: MacTex: http://www.tug.org/mactex/
I will provide the LaTeX source for all of the documents I give you, so feel
free to copy and reproduce any of my code in making your own LaTeX
documents.

5. Supplementary Texts

There is no text in this class, however, if you should feel you would succeed
better with a text to supplement class lectures, I highly recommend the
following two books

e A First Course in Abstract Algebra by Fraleigh

e The Higher Arithmetic by Davenport
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Class 1: Preliminaries and Set Theory

Class Objectives

e Sets and Feilds
e Mathematical Nomenclature
e Negation

e Proof Construction

Direct proof

Indirect proof (by contradiction)
— Contraposition
— Induction
— Equivalence

e Finite and Infinite Sets

e Cardinality

e The Cantor Set



1. Sets
Definition: A set is a well-defined collection of objects called elements
of the set.
The set of letters in our standard alphabet is defined to be:
A = {a’b7c7d76’f7g7h77:’j’k’l7m’n’07p7q7r787t7u7v7w7x’y72}

If an object is in the set, it is said to be an element of the set, represented
by the symbol €

For example: j € A, b ¢ A

This set is said to be well-defined as any object can definitively be said
to either be an element of the set A or not.

The Null Set () = {}

A set may be defined by specifying all of its elements, or a rule by which
to determine if a given object is an element of that set as in:
A = {HSSP students | HSSP student is enrolled in M4767}

This is read 7 A is the set of all HSSP students such that the HSSP student
is enrolled in M4767”

What is another name for this set?

Examples of Common Sets
N=1{0,1,2,3,4,....}
Z ={0,£1,£2,+3,...}

Q:{x’x:§7p7Q7€Z7q7é0}



2. Fields

Fields are relatively difficult to define precisely without talking about groups,
so we will return to fields more deeply in about 3 weeks.

A field is a set over which the usual rules of arithmetic we are familiar with
hold.

The field axioms are:

(a) Addition is commutative: a +b="b+ a.

(b) Addition is associative: (a +b) +c=a+ (b+ c).

(c) Additive identity: 30 such that YVa € F,0+a=a+0 = a.

(d) Additive inverse: Va € F,3 — a such that —a 4+ a =a+ (—a) = 0.

C

)
e) Multiplication is associative: (ab)c = a(bc).

(
(
(g) Multiplicative identity: 31 such that Va € F, la = a.

(h) Multiplicative inverse: Ya € F' — {0},3a"! such that a 'a = 1.
(i) Distributive law: a(b+ ¢) = ab+ ac.

f) Multiplication is commutative: ab = ba.

The sets over which we normally carry out arithmetic are thus fields. It is
this property that allows us to build up the algebra we take for granted!

For a taste of things to come:
In the finite field Zs, 4 x4 =1

We are able to solve linear system of equations because they are associated
with fields.

The equation 23 +1® = 22 has no solutions over the field Z where it clearly
has solutions over the field R



3. Useful Math Jargon and Negation

Okay! Now it is time to start really getting into formal math notation! I
know, what you have all been waiting for!

Useful Math Symbols

e € (is an element of)
e {a|p(a)} (set of a for which p(a) is true)
e V (for all)

e 1 (there exists)

A Bumper Sticker: “For every upside-down A there is a backwards E”

Negation
The negation of “Vz, P(z) is true” is “dzx, for which P(x) is not true.”
The negation of “Jx, for which P(z) is true” is “Va, P(z) is not true.”

This stems from the idea that in order to prove something true for elements
of a certain set, you must show it for all elements of the set. Yet to disprove
something, you must only demonstrate a counter-example.

When negating a statement, also bear in mind that
The negation of “P and () are true” is “either P or () is not true.”

The negation of “either P or @) is true” is “both P and @) are not true.”



Examples:

Negate:
Ve > 0,Vzy > 0,30 > 0 such that Voo, > 0, |x; — 22| < § implies |f(x;) —
fa2)] <€

A statement is true if its negation is false. This leads to the (commonsense-
wise absurd) statement dreamed up by John Hubbard: 7 All 11-legged alli-
gators are orange with blue spots”!!

Negate the above statement:

Why must this be true?

This may be the single most important thing you learn. You will see how
important this ”11-legged alligator” argument is!



4. A Process of Abstraction

Statements to be proved must be formulated in mathematical terms in a
process of abstraction that gives concrete constraints with which to work.

Examples:

Informal: The number about which I am thinking is divisible by 3.

Formal:

Informal: Given two sticks of any size, some multiple of the smaller of the
two will always yield a length larger than the larger of the two.

Formal:

Informal: If you have more pigeons than holes, at least one hole has more
than one pigeon in it.

Formal:

Informal: Every square has either no remainder or a remainder of 1 upon
division by 3

Formal:

Now we have the tools to begin exploring proof strategies!



5. Infinitely Many Prime Numbers

We will begin by proving the key result in number theory that there are
infinitely many prime numbers. This will illustrate some key components
of a proof which will be useful in future.

Prime Number: A number p is prime if and only if it is only divisible by
1 and p

The Fundamental Theorem of Arithmetic: Every natural number has
a unique factorization into prime factors.




6. Types of Proofs

(a) Direct Proof

RTP: If A, then B

Method:

e Begin with A
e Carry out logical, deductive steps
e Reach the conclusion B

Example:

RTP: If a,b € R,a < b, then a < %
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(b) Indirect Proof (Proof by Contradiction)
It is often easier to prove something indirectly rather than directly.

RTP: If A, then B

Method:

e Given A

e Assume not B

e Carry out logical, deductive steps

e Reach a contradiction

e Therefore the assumption must be false, and A implies B

Example:

RTP: If a,b € R,a < b, then a < “T*b
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(¢) Proof by Contraposition

This proof is very similar to proof by contradiction, but subtly differ-
ent.

Statement: If A, then B

Inverse: If B, then A

Converse: If not A, then not B
Contrapositive: If not B, then not A

Which of these are logically equivalent?

RTP: If A, then B

Method:

e Assume not B
e Carry out logical, deductive steps
e Reach the conclusion not A

Example:

RTP: For a,b € R, if ab is irrational, then either a or b is irrational

12



(d) Proof by Induction
I like to think of this as the “staircase argument”
This is the logical equivalent of proving the statement “and so on...”

The goal is to prove a statement P(n),Vn € A, for some set A (usually
Z)

Method:

e Base case: prove P(n) for some beginning value of n (usually
n=1)

e Inductive Hypothesis: Assume P(k) is true for some n = k

e Prove P(k + 1) using the inductive hypothesis

Steps 2 and 3 combine to say, if you are on one step of the staircase,
the next step is always true.

Step 1 initializes the process of “climbing the staircase” at some base
case.

13



Example:
RTP: The sum of the first n odd numbers is n?

RTP: Let z € R with x > —1 and = # 0. Show that (1+xz)" > 1+nz
holds for every n € Z",n > 2

14



(e) Equivalence

In order to prove “if and only if” statements, one must show implica-
tion in both directions.

RTP A if and only if B

Method:

e Show A implies B
e Show B implies A

Generally, one direction is very easy to show, the other is challenging.
This is often seen in proving two sets are equal.

In order to prove A = B, one must show A C B,BC A

Example

RTP (n +2)? — n? is a multiple of 8 if and only if n is odd

15



7. Cardinality
The cardinality of a set is a measure of the size of a set.
For a finite set of n elements, the cardinality is merely n
The formal definition relies upon bijections

A bijection is a function which is invertible, ie it is both one-to-one (in-
jective) and onto (surjective).

Function:

Injective Function:

Surjective Function:

Bijective Function:

Formal definition of finite cardinality: A set X has cardinality n if 3 a
bijection f between X and {1,2,3,...,n}
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A set X is countable infinite if 3 a bijection f between X and N =
{0,1,2,3,...}

RTP: The set Q7 is countably infinite

RTP: The set R is uncountable infinite

17



8. The Ternary Cantor Set

The ternary Cantor set is formed by taking the closed line segment [0, 1]

and first removing the middle £ open set (3,2). Then the middle thirds

of the remaining closed sets are then removed. This process is repeated to
infinity, generating the classic fractal pattern.

Cardinality of the Cantor Set:

We can also determine the length of the Cantor set using the simply found
sum of the geometric series of the removed pieces.

The first piece removed is length 3 the second piece removed is size (2)(3),
the third piece is of size (2)(%) and so on.

9/\3
Total length removed = 3 + 2 4+ 2 + ... = Sio(3)(3) =1

Something look strange to you? Perhaps the fact that there are uncount-
ably infinite numbers in a set with length 0!7!

This consistently surprising result has come to be termed ‘Cantor dust’!
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9. Challenge Problems
An Introduction to Number-Set, Finite Topology

In finite topology, we start with a finite set X and single out some of its
subsets as “open sets.” The only requirement on a topology is that the
collection of open sets satisfies the following rules (axioms)

e The empty set and the set X are both open.

e The union of two open sets is open. (In general, the union of an infinite
number of sets must also be open, but this is irrelevant in the finite
case.)

e The intersection of two open sets is open.
We can construct a topology by starting with a collection of sets that are
required to be open, called a “subbasis” for the topology.

Taking all possible intersections of sets in the subbasis gives a “basis” for
the topology.

Taking all possible unions of sets in the basis gives the complete list of open
sets.

A concrete example:

Suppose that we start with X = {123456} and choose a subbasis consisting
of {123}, {245}, and {456}.

e Find all the other sets that must be open because of the intersection
axiom and the empty-set axiom.

e Find all the other sets that must be open because of the union axiom
and the axiom that set X is open.
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e We now have the smallest collection of open sets that satisfies the ax-
ioms and includes the subbasis.

e What is the smallest legal collection of open sets?

e What is the largest legal collection of open sets?

10. A Web-site model for finite topology

A model for a set of axioms is a set of real-world objects that satisfy the
axioms. As a model for finite topology, consider a Web site of six pages,
linked together as follows:

2—1,2—3
1—3
3—1

4—54—6
5—=>4,5—6

Drawing a model will help you to better visualize this.

In this model, an “open set” is defined by the property that no page in the
set can be reached by a link from outside the set. We need to show that
this definition is consistent with the axioms for open sets. Let L denote the
set of links. For example, 2 — 1 is an element of L.

e Express with quantifiers the condition for a set Y not to be open and
negate it to get the condition for a set Y to be open.

Not open:
Open:

e Use an “l11-legged alligator” argument to prove that in this model, the
empty set is open.

e Use an “11-legged alligator” argument to prove that in this model, the
set X is open.
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e Prove by contradiction that the union of two open sets is open.
If AU B is not open,

e Prove that the intersection of two open sets is open.
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