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1 Well orderings

An order on a set < satisfies that if x < y then y 6< x and if x < y and y < z then x < z. A total order is one
that either x = y, x < y or y < x for every pair of elements x and y. A well order is a total order such that
every nonempty subset has a least element. An example of a well order is N (all positive whole numbers),
non-examples are Z and Q+ (these are the whole numbers, positive and negative, and the positive rational
numbers, respectively. The set of all rational numbers isn’t well-ordered either, but I chose the positive ones
to demonstrate the difference between it and the whole numbers).

1.1 The initial segment

Given a well-ordering on a set W we define, for any x ∈ W the initial segment W (x) := {w ∈ W : w < x}.
We also define a function f : W1 →W2 from one ordered set to another to be order-preserving if x < y =⇒
f(x) < f(y). An order isomorphism is a bijection (1-to-1 function, that takes every element to exactly one
element) that is order preserving, we denote the existence of an ordered isomorphism between two ordered
sets W1,W2 as W1

∼= W2.

Theorem 1. For any well ordered set W , and any x ∈W , W (x) 6∼= W

Proof. Assume by way of contradiction that W (x) ∼= W . Let f : W →W (x) be an order preserving function,
then we automatically have f(x) ∈ W (x). But by definition of W (x) this gives us x > f(x). Now define
S = {w ∈W : f(w) < w}. Since x ∈ S, we have S nonempty, so it has a least element, call this y. Now, we
have f(y) < y, and that f is order preserving, so f(f(y)) < f(y), giving us f(y) ∈ S. But we had f(y) < y,
so that this contradicts the minimality of y. �

(you may notice we didn’t need to assume that f was a bijection in this proof)

1.2 Giving order to order

We are now ready to prove an important result.

Theorem 2. Given two well-ordered sets W1,W2 exactly one of the following holds: (i) W1
∼= W2 (ii)

W1(x) ∼= W2 (for some x ∈W1), or (iii) W1
∼= W2(y) (for some y ∈W2)

Proof. Clearly, if we had (i) and (ii), this would give W1
∼= W1(x), a contradiction, and similarly for (i) and

(iii). Now assume we had (ii) and (iii). Then we would have order preserving bijections f : W1 → W2(y)
and g : W2 → W1(x). Consider the composite map g ◦ f : W1 → g[W2(y)], this is obviously an order-
preserving bijection, since it’s a composition of two of these. We now show that g[W2(y)] = W1(z) for some
z ∈ W1, which will give us the desired contradiction. We have ∀w ∈ g[W2(y)] : w ∈ W1(x) =⇒ w < x so
that S = {s ∈ W1 : ∀w ∈ g[W2(y)] : s > w} is nonempty, then let z be the least element of S, we show
that g[W2(y)] = W1(z). Since by definition of z ∈ S we have g[W2(y)] ⊂ W1(z), we need only show that
g[W2(y)] ⊃ W1(z) assume to the contrary, that some w ∈ W1(z) is not mapped to, then take the least such
w. We have some w′ > w that is mapped to, for otherwise w would be the least element of S. But since
z ≤ x, we have W1(z) ⊂ W1(x) so that w is mapped to by some element a ∈ W2, but since w is not in
the image of W2(y), we have a ≥ y > g−1(w′), but then we’d need to have w = g(a) > w′, by the order
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preserving property of g. But we chose w′ such that w′ > w, a contradiction. So we have g[W2(y)] = W1(z)
for some z which gives W1

∼= W1(z), a contradiction.
Now we show that at least one of (i), (ii) or (iii) holds. Define f = {(x, y) ∈W1×W2 : W1(x) ∼= W2(y)}.

Then we cannot have (x1, y), (x2, y) ∈ f for x1 6= x2 because then we’d have W1(x1) ∼= W1(x2) (impossible
because one of x1 > x2 or x2 > x1 must hold, and thus one of these is contained in the other, giving an
order isomorphism between something and its initial segment), similarly for any y1, y2 ∈ W2. This gives us
that if f were a function (i.e. if it had everything for W1 as a first coordinate, or everything from W2 as a
second coordinate) then it would be injective. We show that this is the case. Say that there was x ∈ W1

and y ∈ W2 that didn’t appear in f . Then choose least such x and y, but we would have W1(x) ∼= W2(y)
under f (since we already showed that f is well defined, and it is trivially order-preserving), a contradiction.
Thus at least one of (i), (ii) or (iii) holds, with an order isomorphism given by f . �

2 The Ordinals

We will now introduce the collection of all well-ordered sets, but first some preliminary notions:

2.1 Transitive Sets

A transitive set is a set S such that ∀x ∈ S : x ⊂ S. For example, the rational numbers Q, when viewed
as Dedekind cuts, are a transitive set (note that not all subsets are elements, which must be the case
by Cantor’s theorem). The reason this is called transitive is because it turns element containment into a
transitive relation i.e. if z is a transitive set, then x ∈ y ∈ z =⇒ x ∈ z.

2.2 The Ordinals

We are now ready to introduce our main topic: the ordinals. A set α is an ordinal if and only if α is
transitive and well ordered by the relation given by ∈. We mean by this that is well ordered by the ordering
x < y ⇔ x ∈ y. The ordinals are essentially the primitive or canonical well-ordered sets, as their ordering
comes only from set containment.

Theorem 3. If α is an ordinal and β ∈ α then β is an ordinal as well.

Proof. We have β ⊂ α, so that it inherits its well ordering from α so we need only show that β is transitive.
Let γ ∈ β then for any δ ∈ γ we have δ < γ, but orderings are transitive so that δ < β. This gives us δ ∈ β
so that γ ⊂ β, as desired. �

2.3 Ordering the Ordinals

Theorem 4. The intersection of two ordinals is an ordinal

Proof. The intersection is well ordered, as a subset of the well ordered set α. Now if x ∈ α∩β then x ∈ α and
x ∈ β so that x ⊂ α and x ⊂ β but this gives x ⊂ α∩β. Thus the intersection is transitive and well-ordered,
thus an ordinal. �

Theorem 5. For any two ordinals α,β. We have exactly one of α = β, α < β or α > β.

We omit the proof because it is complicated and not that enlightening.

Theorem 6. A subset of the collection of ordinals (not necessarily an ordinal itself), has a least element.

Proof. Take any α ∈ A then consider α ∩ A, if this intersection is empty, then nothing less than α is in A
and so α is least in A. If it is nonempty, then it is a subset of α and so has a least element by the fact that
α is well ordered. �
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2.4 What are the Ordinals

Call Ord the collection of ordinals.
We have trivially that ∅ ∈ Ord. Now, given an element x ∈ Ord we also have x ∪ {x} ∈ Ord Since this

remains transitive, and we only change it’s ordering by adding a new greatest element, namely x. Given a
collection A of ordinals, we can define an ordinal supA := α : ∀a ∈ A,α > a. This gives us the limit ordinals,
which are given only as a limit and not as the successor of the thing before it. The first limit ordinal is
ω = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .}

We can then consider ω + 1 = ω ∪ {ω} Etc.

3 Ordinal arithmetic

We are now ready to consider arithmetic on the ordinals. Which give us ways of obtaining new ordinals.

3.1 Ordinals as Numbers

We view the finite ordinals as the regular natural numbers, namely: 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, .... We
define x+ 1 as x ∪ {x}.

3.2 Addition

We define addition recursively by:

• α+ 0 = α

• (α+ β) + 1 = α+ (β + 1)

• α+ β = sup{α+ γ : γ < β} for limit ordinals β

Consider for example n + ω this gives us sup{n + m : m ∈ ω} but this is just the ordinal greater then
all sums of things in ω, while every sum of things in ω is again in ω, so this is just ω itself. However, when
we consider ω + n this is equal to sup{ω + m : m < n} which is the set {ω, ω ∪ {ω}, ω ∪ {ω, {ω}}, . . .}︸ ︷︷ ︸

n-times

. In

particular, this tells us that ordinal arithmetic isn’t commutative.

3.3 Multiplication

We define multiplication as:

• α ∗ 0 = 0

• α ∗ (β + 1) = α ∗ β + α

• α ∗ β = sup{α ∗ γ : γ < β} for limit ordinals β

This gives us α ∗ 1 = α and α ∗ 2 = α+ α and so α ∗ n = α+ α+ α+ . . .︸ ︷︷ ︸
n-times

Theorem 7. 1 ∗ α = α

Proof. We proceed by transfinite induction:

• 1 ∗ 0 = 0

• 1 ∗ (α+ 1) = α+ 1

• 1 ∗ α = sup{1 ∗ β : β < α} = sup{β : β < α} = α for limit ordinals α

�

Again, multiplication isn’t commutative, as 2 ∗ ω = ω while ω ∗ 2 = ω + ω = sup{ω + α : α < ω}
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3.4 Exponentiation

We define exponentiation as:

• α0 = 1

• αβ+1 = αβ ∗ α

• αβ = sup{αγ : γ < β}

We have 1ω = sup{1n : n ∈ ω} = sup 1 = 1 which is unsurprising, and holds for all ordinals. However,
consider 2ω = sup{2n : n ∈ ω} = sup{n : n ∈ ω} = ω, this is in contrast to the cardinal numbers, where for
every cardinal ℵ we have 2ℵn ≥ ℵn+1. The same holds for every n, namely nω = ω, however, this is not true
for ωω = sup{ωn : n ∈ ω}, because consider ω2 = ω ∗ ω = sup{ω ∗ n : n ∈ ω} so that ∀n ∈ ω : ω2 > ω ∗ n.

Given that ωω > ω we also have that ω(ωω) > ωω and so we can consider the sequence {ω, ωω, ωωω

, . . .},
specifically, its supremum, which we call ε. We thus have the equation ωε = ε.

3.5 The Ordinals

We can now picture the ordinals all together, they look something like:

0, 1, 2, . . . ω, ω + 1ω + 2, . . . ω ∗ 2, ω ∗ 2 + 1, . . . ω ∗ 3, . . . ω2, ω2 + 1 . . . ω2 + ω,

ω2 + ω + 1, . . . ω3, . . . ω3 + ω, . . . ω3 + ω ∗ 2, . . . ω3 + ω2, ω3 + ω2 + 1, . . .

ωω, . . . ωω + ω, . . . ωω ∗ 2, ωω ∗ 2 + 1, . . . ωω+1, . . . ωω
2

, . . . ωω
2+1,

. . . ωω
2+ω, . . . ωω

3

, . . . ωω
ω

, . . . ε, ε+ 1 . . .
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