The Ordinal Numbers

Mendel Keller

November 18, 2017

1 Well orderings

An order on a set < satisfies that if x < y then $y \not< x$ and if x < y and y < z then x < z. A total order is one that either x = y, x < y or y < x for every pair of elements x and y. A well order is a total order such that every nonempty subset has a least element. An example of a well order is \mathbb{N} (all positive whole numbers), non-examples are \mathbb{Z} and \mathbb{Q}^+ (these are the whole numbers, positive and negative, and the positive rational numbers, respectively. The set of all rational numbers isn't well-ordered either, but I chose the positive ones to demonstrate the difference between it and the whole numbers).

1.1 The initial segment

Given a well-ordering on a set W we define, for any $x \in W$ the initial segment $W(x) := \{w \in W : w < x\}$. We also define a function $f: W_1 \to W_2$ from one ordered set to another to be order-preserving if $x < y \implies f(x) < f(y)$. An order isomorphism is a bijection (1-to-1 function, that takes every element to exactly one element) that is order preserving, we denote the existence of an ordered isomorphism between two ordered sets W_1, W_2 as $W_1 \cong W_2$.

Theorem 1. For any well ordered set W, and any $x \in W$, $W(x) \not\cong W$

Proof. Assume by way of contradiction that $W(x) \cong W$. Let $f: W \to W(x)$ be an order preserving function, then we automatically have $f(x) \in W(x)$. But by definition of W(x) this gives us x > f(x). Now define $S = \{w \in W : f(w) < w\}$. Since $x \in S$, we have S nonempty, so it has a least element, call this y. Now, we have f(y) < y, and that f is order preserving, so f(f(y)) < f(y), giving us $f(y) \in S$. But we had f(y) < y, so that this contradicts the minimality of y.

(you may notice we didn't need to assume that f was a bijection in this proof)

1.2 Giving order to order

We are now ready to prove an important result.

Theorem 2. Given two well-ordered sets W_1, W_2 exactly one of the following holds: (i) $W_1 \cong W_2$ (ii) $W_1(x) \cong W_2$ (for some $x \in W_1$), or (iii) $W_1 \cong W_2(y)$ (for some $y \in W_2$)

Proof. Clearly, if we had (i) and (ii), this would give $W_1 \cong W_1(x)$, a contradiction, and similarly for (i) and (iii). Now assume we had (ii) and (iii). Then we would have order preserving bijections $f: W_1 \to W_2(y)$ and $g: W_2 \to W_1(x)$. Consider the composite map $g \circ f: W_1 \to g[W_2(y)]$, this is obviously an orderpreserving bijection, since it's a composition of two of these. We now show that $g[W_2(y)] = W_1(z)$ for some $z \in W_1$, which will give us the desired contradiction. We have $\forall w \in g[W_2(y)] : w \in W_1(x) \implies w < x$ so that $S = \{s \in W_1 : \forall w \in g[W_2(y)] : s > w\}$ is nonempty, then let z be the least element of S, we show that $g[W_2(y)] = W_1(z)$. Since by definition of $z \in S$ we have $g[W_2(y)] \subset W_1(z)$, we need only show that $g[W_2(y)] \supset W_1(z)$ assume to the contrary, that some $w \in W_1(z)$ is not mapped to, then take the least such w. We have some w' > w that is mapped to, for otherwise w would be the least element of S. But since $z \leq x$, we have $W_1(z) \subset W_1(x)$ so that w is mapped to by some element $a \in W_2$, but since w is not in the image of $W_2(y)$, we have $a \geq y > g^{-1}(w')$, but then we'd need to have w = g(a) > w', by the order preserving property of g. But we chose w' such that w' > w, a contradiction. So we have $g[W_2(y)] = W_1(z)$ for some z which gives $W_1 \cong W_1(z)$, a contradiction.

Now we show that at least one of (i), (ii) or (iii) holds. Define $f = \{(x, y) \in W_1 \times W_2 : W_1(x) \cong W_2(y)\}$. Then we cannot have $(x_1, y), (x_2, y) \in f$ for $x_1 \neq x_2$ because then we'd have $W_1(x_1) \cong W_1(x_2)$ (impossible because one of $x_1 > x_2$ or $x_2 > x_1$ must hold, and thus one of these is contained in the other, giving an order isomorphism between something and its initial segment), similarly for any $y_1, y_2 \in W_2$. This gives us that if f were a function (i.e. if it had everything for W_1 as a first coordinate, or everything from W_2 as a second coordinate) then it would be injective. We show that this is the case. Say that there was $x \in W_1$ and $y \in W_2$ that didn't appear in f. Then choose least such x and y, but we would have $W_1(x) \cong W_2(y)$ under f (since we already showed that f is well defined, and it is trivially order-preserving), a contradiction. Thus at least one of (i), (ii) or (iii) holds, with an order isomorphism given by f.

2 The Ordinals

We will now introduce the collection of all well-ordered sets, but first some preliminary notions:

2.1 Transitive Sets

A transitive set is a set S such that $\forall x \in S : x \subset S$. For example, the rational numbers \mathbb{Q} , when viewed as Dedekind cuts, are a transitive set (note that not all subsets are elements, which must be the case by Cantor's theorem). The reason this is called transitive is because it turns element containment into a transitive relation i.e. if z is a transitive set, then $x \in y \in z \implies x \in z$.

2.2 The Ordinals

We are now ready to introduce our main topic: the ordinals. A set α is an ordinal if and only if α is transitive and well ordered by the relation given by \in . We mean by this that is well ordered by the ordering $x < y \Leftrightarrow x \in y$. The ordinals are essentially the primitive or canonical well-ordered sets, as their ordering comes only from set containment.

Theorem 3. If α is an ordinal and $\beta \in \alpha$ then β is an ordinal as well.

Proof. We have $\beta \subset \alpha$, so that it inherits its well ordering from α so we need only show that β is transitive. Let $\gamma \in \beta$ then for any $\delta \in \gamma$ we have $\delta < \gamma$, but orderings are transitive so that $\delta < \beta$. This gives us $\delta \in \beta$ so that $\gamma \subset \beta$, as desired.

2.3 Ordering the Ordinals

Theorem 4. The intersection of two ordinals is an ordinal

Proof. The intersection is well ordered, as a subset of the well ordered set α . Now if $x \in \alpha \cap \beta$ then $x \in \alpha$ and $x \in \beta$ so that $x \subset \alpha$ and $x \subset \beta$ but this gives $x \subset \alpha \cap \beta$. Thus the intersection is transitive and well-ordered, thus an ordinal.

Theorem 5. For any two ordinals α, β . We have exactly one of $\alpha = \beta$, $\alpha < \beta$ or $\alpha > \beta$.

We omit the proof because it is complicated and not that enlightening.

Theorem 6. A subset of the collection of ordinals (not necessarily an ordinal itself), has a least element.

Proof. Take any $\alpha \in A$ then consider $\alpha \cap A$, if this intersection is empty, then nothing less than α is in A and so α is least in A. If it is nonempty, then it is a subset of α and so has a least element by the fact that α is well ordered.

$\mathbf{2.4}$ What are the Ordinals

Call Ord the collection of ordinals.

We have trivially that $\emptyset \in Ord$. Now, given an element $x \in Ord$ we also have $x \cup \{x\} \in Ord$. Since this remains transitive, and we only change it's ordering by adding a new greatest element, namely x. Given a collection A of ordinals, we can define an ordinal sup $A := \alpha : \forall a \in A, \alpha > a$. This gives us the limit ordinals, which are given only as a limit and not as the successor of the thing before it. The first limit ordinal is $\omega = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \dots\}$

We can then consider $\omega + 1 = \omega \cup \{\omega\}$ Etc.

3 **Ordinal** arithmetic

We are now ready to consider arithmetic on the ordinals. Which give us ways of obtaining new ordinals.

3.1**Ordinals as Numbers**

We view the finite ordinals as the regular natural numbers, namely: $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}, \dots$ We define x + 1 as $x \cup \{x\}$.

3.2 Addition

We define addition recursively by:

- $\alpha + 0 = \alpha$
- $(\alpha + \beta) + 1 = \alpha + (\beta + 1)$
- $\alpha + \beta = \sup\{\alpha + \gamma : \gamma < \beta\}$ for limit ordinals β

Consider for example $n + \omega$ this gives us $\sup\{n + m : m \in \omega\}$ but this is just the ordinal greater then all sums of things in ω , while every sum of things in ω is again in ω , so this is just ω itself. However, when we consider $\omega + n$ this is equal to $\sup\{\omega + m : m < n\}$ which is the set $\{\omega, \omega \cup \{\omega\}, \omega \cup \{\omega, \{\omega\}\}, \ldots\}$. In

particular, this tells us that ordinal arithmetic isn't commutative.

Multiplication 3.3

We define multiplication as:

- $\alpha * 0 = 0$
- $\alpha * (\beta + 1) = \alpha * \beta + \alpha$
- $\alpha * \beta = \sup\{\alpha * \gamma : \gamma < \beta\}$ for limit ordinals β

This gives us $\alpha * 1 = \alpha$ and $\alpha * 2 = \alpha + \alpha$ and so $\alpha * n = \underbrace{\alpha + \alpha + \alpha + \dots}_{n-\text{times}}$

n-times

Theorem 7. $1 * \alpha = \alpha$

Proof. We proceed by transfinite induction:

- 1 * 0 = 0
- $1 * (\alpha + 1) = \alpha + 1$
- $1 * \alpha = \sup\{1 * \beta : \beta < \alpha\} = \sup\{\beta : \beta < \alpha\} = \alpha$ for limit ordinals α

Again, multiplication isn't commutative, as $2 * \omega = \omega$ while $\omega * 2 = \omega + \omega = \sup \{\omega + \alpha : \alpha < \omega\}$

3.4 Exponentiation

We define exponentiation as:

- $\alpha^0 = 1$
- $\alpha^{\beta+1} = \alpha^{\beta} * \alpha$
- $\alpha^{\beta} = \sup\{\alpha^{\gamma} : \gamma < \beta\}$

We have $1^{\omega} = \sup\{1^n : n \in \omega\} = \sup 1 = 1$ which is unsurprising, and holds for all ordinals. However, we have $1^{\omega} = \sup\{2^n : n \in \omega\} = \sup\{n : n \in \omega\} = \omega$, this is unsurprising, and nodes for an ordinals. However, consider $2^{\omega} = \sup\{2^n : n \in \omega\} = \sup\{n : n \in \omega\} = \omega$, this is in contrast to the cardinal numbers, where for every cardinal \aleph we have $2^{\aleph_n} \ge \aleph_{n+1}$. The same holds for every n, namely $n^{\omega} = \omega$, however, this is not true for $\omega^{\omega} = \sup\{\omega^n : n \in \omega\}$, because consider $\omega^2 = \omega * \omega = \sup\{\omega * n : n \in \omega\}$ so that $\forall n \in \omega : \omega^2 > \omega * n$. Given that $\omega^{\omega} > \omega$ we also have that $\omega^{(\omega^{\omega})} > \omega^{\omega}$ and so we can consider the sequence $\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots\}$,

specifically, its supremum, which we call ε . We thus have the equation $\omega^{\epsilon} = \epsilon$.

3.5The Ordinals

We can now picture the ordinals all together, they look something like:

$$\begin{array}{l} 0,1,2,\ldots\omega,\omega+1\,\omega+2,\ldots\omega*2,\omega*2+1,\ldots\omega*3,\ldots\omega^2,\omega^2+1\ldots\omega^2+\omega,\\ \omega^2+\omega+1,\ldots\omega^3,\ldots\omega^3+\omega,\ldots\omega^3+\omega*2,\ldots\omega^3+\omega^2,\omega^3+\omega^2+1,\ldots\\ \omega^{\omega},\ldots\omega^{\omega}+\omega,\ldots\omega^{\omega}*2,\omega^{\omega}*2+1,\ldots\omega^{\omega+1},\ldots\omega^{\omega^2},\ldots\omega^{\omega^2+1},\\ \ldots\omega^{\omega^2+\omega},\ldots\omega^{\omega^3},\ldots\omega^{\omega^{\omega}},\ldots\varepsilon,\varepsilon+1\ldots\end{array}$$