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About these notes

Warning! The notes you have in your hands are not a textbook, but an outline for a Moore method
course on point-set topology. It contains definitions and theorems, exercises and questions, along
with a few remarks that provide motivation and context. However, there are no proofs and few
explanations your job is to discover these for yourself. Even more so than with the average math
textbook, you cannot simply read this text! Rather, treat it as a set of guide posts to help you find
your own way through a rugged but beautiful terrain. You are not the first to visit this magnificent
landscape, but you can still experience the thrill of exploring it for yourself. Its like hiking up to a
mountain summit instead of taking the tour bus.

You are not setting out on this trek alone: you have your classmates to help you. In class, students
will take turns presenting proofs of statements and critiquing each others arguments. What one
person is confused about, the class as a whole should be able to unravel (with only minimal
participation by me). For this system to work, it is crucial that you treat your fellow students with
sensitivity and respect but dont let them get away with a bad argument! And when you are the
presenter yourself, do not be afraid of getting stuck or of making a mistake; its no big deal. It
happens to everyone, and it is the only way to make progress in mathematics.

In [-statements, the proofs are relatively routine. They may be tedious sometimes, so it may not
be worth your while to write out the entire proof in detail. (However, if you are not sure how the
proof would go, you are encouraged to do some part of it, or to try a few examples of your own
devising, to help you understand the statement; of course, this is always a good idea!) Statements
labelled “Challenge” are particularly difficult. Statements labelled “Fuzzy” are vaguely-phrased
questions that hint at an interesting notion or result; they are an opportunity for you to unleash
your creativity and come up with your own conjectures.

We’re going to start working through the problems, and proceed at whatever pace you work at. I
have no idea how far we’ll get, but hopefully we’ll at least get to some more interesting parts. I
can’t force you to work outside of class, and won’t try; however, if you spend time working on your
own, we’ll be able to go faster and you’ll learn more and probably have more fun. Hopefully the
class is exciting enough that you feel compelled to think about topology outside of class. And after
HSSP is over, you can still work on the problems here! I’ll be happy to give you tips and answer
any questions; just email me.

Disclaimers: These notes are (almost) entirely taken from notes for a similar class Alfonso Gracia-
Saz taught at Canada/USA MathCamp 2014, which are available at http://www.math.utsc.

utoronto.ca/c27/alfonso.pdf.

These notes are incomplete. I will continue to add to them over the course of HSSP, making sure
to keep ahead of where the class is.
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1 The definition of topology

We are about to introduce the main objects of this course: topologies. The definition
may appear at first random and capricious, and you may wonder why we should care
about it. Later on, we will motivate where this definition comes from and why it is
a useful one. For now, we want to concentrate simply on getting familiar with the
concept.

Definition 1.1. Let X be a set a topology on X is a family τ of subsets of X which satisfies three
properties (spelled out below). We will say that a subset of X is an open set iff it is an element of
τ . The three properties are:

(T1) The total set and the empty set are open sets.

Equivalently, X ∈ τ and ∅ ∈ τ .

(T2) The intersection of any two open sets is an open set.

Equivalently, if A,B ∈ τ , then A ∩B ∈ τ .

(T3) The union of open sets (no matter how many, including infinitely many) is an open set.

Equivalently, if I is a set of indices and Ai ∈ τ for all i ∈ I then
⋃
i∈I

Ai ∈ τ .

Or, equivalently, for any σ ⊆ τ ,
⋃
B∈σ

B ∈ τ .

A topological space is a pair (X, τ) where X is a set and τ is a topology on X.

Exercise 1.2. ([) Among the following, some are topologies on the set Z and some are not. Which
ones are? If an example is not a topology, but you can modify it slightly to make it into a topology,
do so. If an example is a topology and you can generalize it into more examples, do so.

(a) τ = {V ⊆ Z | 0 ∈ V }. In words, a set is open iff it contains 0.

(b) τ = {V ⊆ Z | 0 /∈ V }. In words, a set is open iff it does not contain 0.

(c) τ = {V ⊆ Z | 0 ∈ V and 1 ∈ V }.

(d) τ = {V ⊆ Z | 0 ∈ V or 1 ∈ V }.

(e) τ = {V ⊆ Z | V is finite}.

(f) τ = {V ⊆ Z | V is infinite}.

Exercise 1.3. Among the following, which ones are topologies on the set R and which ones are
not?

(a) τ = {(a,∞) | a ∈ R} ∪ {∅,R}.

(b) τ = {[a,∞) | a ∈ R} ∪ {∅,R}.

Exercise 1.4. Let X be any set.
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(a) What is the topology on X that has the most open sets? This is called the discrete topology
on X.

(b) What is the topology on X that has the least open sets? This is called the indiscrete topology
on X.

Exercise 1.5. Let X be an arbitrary set. Which ones of the following are topologies?

(a) The cofinite topology: A set V ⊆ X is open iff [X \ V is finite or V = ∅].

(b) The coinfinite topology: A set V ⊆ X is open iff [X \ V is infinite or V = ∅ or V = X].

(c) The cocountable topology: A set V ⊆ X is open iff [X \ V is countable or V = ∅].

Note: “Countable” includes “finite” as a particular case.

Exercise 1.6. Let (X, τ) be a topological space. Prove each of the following statements true or
false.

(a) The intersection of any three open sets is open.

(b) The intersection of finitely many open sets is open.

(c) The intersection of open sets is open.

Definition 1.7. Let x ∈ RN and let ε > 0. The ball centered at x with radius ε is

Bε(x) := {y ∈ RN | d(y, x) < ε}

where d(y, x) is the Euclidean distance between the points x and y.

Exercise 1.8. ([) Describe geometrically what a ball is in R, R2, and R3.

Definition 1.9. We define the standard topology or the usual topology on RN as follows. Let
V ⊆ RN . We say that V is open (in this topology) iff the following property is true: “For every
x ∈ V , there exists ε > 0 such that Bε(x) ⊆ V .” When we refer to a topology on RN or to open
sets on RN without specifying which topology, we mean the standard one. This is the topology one
often uses in analysis.

Exercise 1.10. Prove that the topology in Definition 1.9 is actually a topology.

Exercise 1.11. Show which ones of the following examples are open according to Definition 1.9:

(a) ([) The set {1} in R.

(b) ([) The interval (2, 5) in R.

(c) The ball Bδ(y) in RN for any y ∈ RN and any δ > 0.

(d) ([) The interval [0, 1) in R.

(e) ([) The set {(x, y) ∈ R2 | x > y} in R2.

Exercise 1.12. Find all the topologies on the set X = {0, 1, 2}.

Fuzzy 1.13. Look back at your answer to Exercise 1.12. Some of those topologies are very similar.
One could even say that they are practically “the same topology” with different names. Come up
with a definition of what practically the same topology could mean. Also, come up with a better
name. With this definition, how many essentially different topologies are there on {0, 1, 2}?
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2 Sequences and limits

In this chapter we will talk about limits and accumulation points of sequences in any
topological space. Whenever we have a topology, we have a notion of limit, even if there
is not a distance or a notion of “being close”. Challenge 2.16 at the end of the chapter
is the first surprise of the course and it illustrates how sequences do not quite behave
in general the way you have gotten used to. This will be one leitmotif of this course.

Definition 2.1. Let X be a set. A sequence in X is a map x : N→ X. Notice that in this course
we will include 0 in N. As notation, we often write xn instead of x(n) for an element in X. We
may also write (xn) or (xn)n∈N or (xn)∞n=0 to refer to the whole sequence.

Definition 2.2. Let P (n) be a statement the depends on a natural number n ∈ N. We say that
“P (n) is eventually true for all n” if there exists n0 ∈ N such that P (n) is true for all n ≥ n0. If
there is no ambiguity, we will say simple that “P (n) is eventually true.”

Definition 2.3. Let (X, τ) be a topological space. Let (xn) be a sequence in X. Let a ∈ X. We
say that a is a limit of the sequence when the following statement is true: “If V ⊆ X is an open set
such that a ∈ V , then xn ∈ V eventually for all n.” In this case we say that the sequence converges
to a. In words, this means that every open set containing a has to contain all the sequence, except
for the first few terms.

We say that a sequence is convergent if it has at least one limit.

Exercise 2.4. Consider the sequence 0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, 6, . . . on the set X = R. For each of
the following topologies, find all of its limits.

(a) the discrete topology,

(b) the indiscrete topology,

(c) the cofinite topology,

(d) ([) the cocountable topology,

(e) ([) the topology in Exercise 1.3,

(f) the standard topology.

Lemma 2.5. Let (X, τ) be a topological space. Let (xn) be a sequence in X. Let a ∈ X. Prove
that the following two statements are equivalent:

1. “For every open set V ⊆ X such that a ∈ V and for every n0 ∈ N, there exists n ≥ n0 such
that xn ∈ V .”

2. “For every open set V ⊆ X such that a ∈ V , there are infinitely many n ∈ N such that
xn ∈ V .” In words, every open set containing a contains infinitely many terms of the sequence.

Definition 2.6. In the situation of Lemma 2.5, when the two equivalent conditions are satisfied,
we say that a is an accumulation point of the sequence.

Proposition 2.7. ([) Every limit of a sequence is also an accumulation point.
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Exercise 2.8. Repeat Exercise 2.4, but this time find all the accumulation points instead of all
the limits.

Fuzzy 2.9. Look back at Exercise 2.4. It included some examples where a sequence has more
than one limit. Think of the discrete and indiscrete case; if a topology has more open sets, are
sequences more or less likely to have multiple limits? Try to prove that in R with the usual topology,
no sequence can have more than one limit. Which other topologies satisfy that? Can you come
up with a necessary condition or a sufficient condition for a topology not to have sequences with
multiple limits?

Exercise 2.10. Let C be the set of students who came to class today. We define a topology on C
as follows. Given V ⊆ C, we say that V is open iff it satisfies the following property: “If x ∈ V
and y is sitting immediately to the left of x, then y ∈ V .”

(a) Prove that this is actually a topology.

(b) Consider the sequence Aaron, Cindy, Aaron, Cindy, Aaron, Cindy, . . . . Find all its limits.

(c) Find all the accumulation points of the same sequence.

Exercise 2.11. Consider the set Z with the cofinite topology. Find an example of a sequence such
that (or prove that such an example does not exist):

(a) it has more than one limit,

(b) it has exactly one limit and exactly one accumulation point,

(c) it has exactly one limit and it has more than one accumulation point,

(d) it has no limits and no accumulation points,

(e) it has no limits and it has exactly one accumulation point,

(f) it has no limits and it has more than one accumulation point.

Exercise 2.12. Describe all convergent sequences in R with the cocountable topology.

Definition 2.13. Let (X, τ) be a topological space. Let x : N→ X be a sequence. A subsequence
of x is a sequence of the form x ◦ λ where λ : N → N is a strictly increasing map. As notation, if
we write xn := x(n) for each n ∈ N and nk := λ(k) for each k ∈ N. we will often write than (xnk

)k
is a subsequence of (xn)n. If there is no danger of ambiguity, we may write simply that (xnk

) is a
subsequence of (xn).

Proposition 2.14. Let (xn) be a sequence in the topological space (X, τ) and let a ∈ X. Assume
that a is a limit of a subsequence of (xn). Prove that a is an accumulation point of (xn).

Proposition 2.15. Let (xn) be a sequence in R with the standard topology. Let a ∈ X. Assume
that a as an accumulation point of (xn). Prove that a is the limit of some subsequence of (xn).

Challenge 2.16. Give an example that shows that Proposition 2.15 may fail if we use an arbitrary
topological space.
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3 Closed Sets

You know what an open set; now you are ready to learn what a closed set is. Just be
careful and remember that closed does not equal “not open” (see Note 3.5). Closed sets
give us an alternative way to think of a topology without mentioning open sets (see
Theorem 3.8 and Note 3.9). Finally, you should look at results 2.14, 2.15, and 2.16 in
parallel with 3.13, 3.14, and 3.15. Notice the pattern.

Definition 3.1. Let (X, τ) be a topological space. Let A ⊆ X. We say that A is closed when
X \A is open.

Exercise 3.2. ([) Which ones of the following sets are closed in R with the standard topology?

• A = [0, 1],

• B = {0},

• C = (0, 1],

• D = [0,∞),

• E = { 1
n | n ∈ N \ {0}},

• F = E ∪ {0}.

Exercise 3.3. For each of the following topological spaces (X, τ), give examples of subsets
A1, A2, A3, A4 ⊆ X such that A1 is open but not closed, A2 is closed but not open, A3 is both open
and closed, and A4 is neither open nor closed (or prove that such subsets do not exist). You may
not use X or ∅ as any of your subsets

(a) X is the topological space of Exercise 2.10 (the topology on the students in the class).

(b) X = Z with the cofinite topology.

Definition 3.4. Let (X, τ) be a topological space. A set A ⊆ X is called clopen if it is both open
and closed, and called ajar if it is neither open nor closed.

Note 3.5. If Definition 3.4 makes you uncomfortable, you are not alone. Watch the following
video: http://youtu.be/SyD4p8_y8Kw

Warning : The video contains profanity and dark humor. If you think such things may offend you,
please do not watch the video.

Theorem 3.6. Let (X, τ) be a topological space. Let F denote the collection of closed sets. Then
the following properties are true:

(C1) X ∈ F and ∅ ∈ F .

In words, the total set and the empty set are closed sets.

(C2) If A,B ∈ F , then A ∪B ∈ F .

In words, the union of any two closed sets is a closed set.
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(C3) For any Λ ⊆ F ,
⋂
B∈Λ

B ∈ F .

In words, the intersection of closed sets (no matter how many, including infinitely many) is a
closed set.

Exercise 3.7. Show with an example in the standard topology that the arbitrary union of closed
sets may not be closed.

Theorem 3.8. Let X be a set. Let F ⊆ P(X) be a family of subsets that satisfies conditions
(C1), (C2), and (C3) from Theorem 3.6. Then there exists a unique topology on X than has F as
the family of closed sets.

Note 3.9. Theorem 3.8 is very important and it is easy to miss the deep implications it has. Until
now, whenever we wanted to define a topology on a set, we would define the family of open sets.
We could define the open sets to be any family we wanted, as long as they satisfied conditions (T1),
(T2), (T3). Theorem 3.8 says that, instead, we may chose to define a topology by saying who the
closed set are, and that we can choose any family of subsets to be the closed sets as long as they
satisfy (C1), (C2), (C3). If they do, we do not need to worry about what the open sets are or about
checking that they satisfy (T1), (T2), (T3). It will come for free. The following example shows
that some topologies are more naturally defined by saying what the closed sets are than by saying
what the open sets are.

Exercise 3.10. ([) Let X be a set. We are going to define two topologies on X. You already
proved that they were topologies (back in Exercise 1.5). Show again that they are topologies, but
this time using Theorem 3.8 and Note 3.9. Notice that the proofs are now shorter and more natural.

(a) The cofinite topology on X is the topology where the closed sets are the finite sets and X.

(b) The cocountable topology on X is the topology where the closed sets are the countable sets
and X.

Definition 3.11. Let (X, τ) be a topological space. Let A ⊆ X. We say that A is sequentially
closed when it satisfies the following property: “Let (xn) be a sequence in X and let a ∈ X be a
limit of the sequence. Assume that xn ∈ A for all n ∈ N. Then a ∈ A.”

Exercise 3.12. Prove that (0, 1] is not sequentially closed in R with the standard topology. Prove
it directly from Definition 3.11, without using Proposition 3.14 below.

Proposition 3.13. Let (X, τ) be a topological space and let A ⊆ X. Prove that if A is closed,
then A is sequentially closed.

Proposition 3.14. Consider R with the standard topology. Let A ⊆ R. Prove that if A is
sequentially closed, then A is closed.

Challenge 3.15. Give an example of a topological space (X, τ) and a subset A ⊆ X such that A
is sequentially closed but A is not closed.
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4 Neighborhoods

There are a few things that are easier to do in the standard topology because it has
balls. Topologies in general do not have balls, but they do have neighborhoods. To a
certain extent, neighborhoods are like balls. Lets get acquainted.

Challenge 4.6 below is very important. If you read it next to Theorem 3.8 you will see
one of the themes of this course: open sets are not the only way to define a topology.

Definition 4.1. Let (X, τ) be a topological space. Let A ⊆ X. We say that A is an open
neighborhood of x when A is open and x ∈ A.

Definition 4.2. Let (X, τ) be a topological space. Let x ∈ X. A basis of open neighborhoods of x
in (X, τ) is a family of open set Bx ⊆ τ such that

• W is an open neighborhood of x for every W ∈ Bx.

• If V is an open neighborhood of x, then there exists W ∈ Bx such that W ⊆ V .

Exercise 4.3. Let x ∈ R. Among the following families of sets, which ones are bases of open
neighborhoods of x in R with the standard topology?

For this exercise, do not write lengthy proofs. Just answer “yes” or “no” for each candidate, and,
if needed, give a one-line explanation at most.

(a) {(x− ε, x+ ε) | ε > 0}

(b) {(x− 1, x+ ε) | ε > 0}

(c) {[x− ε, x+ ε] | ε > 0}

(d) {(x− ε, x+ 2ε) | ε > 0}

(e) {(x− 1
n , x+ 1

n) | n ∈ Z+}

(f) {(x− 1
n , x+ 1

n) | n ∈ Z+, n > 100, n is odd}

(g) {(x− ε, x+ ε) ∪ (x+ 2ε, x+ 3ε) | ε > 0}

(h) {(a, b) | a < x < b}

(i) {V ⊆ R | V is open and x ∈ V }

Exercise 4.4. For each of the following topological spaces, come up with a basis of open neigh-
borhoods of each point which is as “small” as you can make it.

(a) A discrete topological space.

(b) An indiscrete topological space.

(c) The set of students in class with the topology of Exercise 2.10.

(d) The cofinite topology on Z.
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Exercise 4.5. Let (X, τ) be a topological space. Let a ∈ X and let Ba be a basis of open
neighborhoods of a in (X, τ). Write a condition equivalent to “a is a limit of the sequence (xn) in
the topological space (X, τ)” which uses the basis of open neighborhoods instead of open sets in
general. Then prove they are equivalent.

Challenge 4.6. So far we know how to define a topology by saying who the open sets are, or by
saying who the closed sets are. Find out a way to define a topology by saying who the neighborhoods
of each point are. Specifically, list a set of axioms such that:

• If (X, τ) is a topological space, and Bx is a basis of open neighborhoods for x for every x ∈ X,
then the families Bx satisfies the set of axioms.

• Let X be a set (not a topological space). Assume that for every x ∈ X we have a family
Bx ⊆ P(X) and that they satisfy the axioms. Then there exists a unique topology on X
which has Bx as a basis of neighborhoods of x for all x ∈ X.

Note: The existence part of the proof is tricky, and you may think you are done before you are.
First, you need to define a topology. Then, you need to check it is a topology. Finally, you need to
prove that this topology does have the original families Bx as bases of open neighborhoods.

Once we have this theorem, we may choose to describe a topology by giving a basis of open
neighborhoods of each point in X instead of by describing the open sets. We are allowed to choose
these bases any way we want as long as they satisfy the axioms. If you think about the definition
of the standard topology in RN , you will notice that it makes more sense to define it in terms of
open neighborhoods than in terms of open sets, just like it makes more sense to definite the cofinite
topology in terms of closed sets than in terms of open sets.

Exercise 4.7. If you have taken a calculus or analysis class, you may have learned the definition
of three “different” concepts. Given a sequence (xn) in R, you may have defined the concepts

lim
n→∞

xn = a ∈ R, lim
n→∞

xn =∞, lim
n→∞

xn = −∞.

These three concepts are not so different if we look at them from the lens of topology!

Consider the set R := R ∪ {∞,−∞}. Define a topology on R such that the three notions of limit
are all particular cases of the topological definition of limit.

Exercise 4.8. We are going to prove the infinitude of primes using topology! Given a, b ∈ Z, let
us define the following set of integers: Sa,b := {a+ nb | n ∈ Z}.

(a) Prove that there exists a topology τp on Z that has {Sa,b | b 6= 0} as a basis of open neigh-
borhoods of a for every a ∈ Z.

(b) Prove that for every a, b ∈ Z with b 6= 0, Sa,b is clopen on (Z, τp).

(c) Note that

Z \ {1,−1} =
⋃

primes p

S0,p

and that {1,−1} is not open. Now, assume there are finitely many primes, and get a contra-
diction.
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