Weather in a Tank: HSSP Spring 2011 Jareth Holt

Course Description

Weather surrounds us. Whether blizzards in Boston or heat waves in Houston, weather plays a big role in our lives. In this class, we'll look at the components that drive the weather starting from the most basic concepts up to a full system. The ultimate goal is to answer the question: What ingredients make weather? Each class will have a fun lab or demonstration to drive home the day's point, building up to the rotating tank weather simulator (hence: weather in a tank). If you've ever wanted to understand what weathermen are talking about, add some depth to cloud-watching, or just want an earth science spin on the basic sciences, this class is for you!

Syllabus

Part I: The earth is warm at the equator and cold at the poles

- 1) Incoming radiation
 - a) Where does all our energy come from?
 - b) Lab: Solar cells on a sphere
 - c) Daily and seasonal cycles
- 2) Outgoing radiation and the greenhouse effect
 - a) Hot things give off energy; hotter things give off more energy
 - b) Demo 1: Energy vs. surface area
 - c) Different kinds of radiation
 - d) Demo 2: Opacity to certain wavelengths
- Part II: Fluids move things around
 - 3) Basic fluid motions
 - a) The kinds of properties fluids carry
 - b) How properties change: Dispersion and diffusion
 - c) Lab: Dyes in agitated and rotating fluids
 - d) Movies and discussion: Volcano plumes, clouds, and pollution
 - 4) Convection: How energy is moved upward
 - a) The basic convection cycle
 - b) Demo: Convection by a heating pad
 - c) Lab: Convection by ice; thermal stratification
 - 5) Convection 2: How energy is moved sideways
 - a) Recap: The equator is warmer than the poles
 - b) Lab: Slantwise convection with and without heating
 - c) Discussion: What were the differences between upwards and sideways convection?

Part 3: Rotation makes a BIG difference!

- 6) Slow rotation
 - a) Rotating fluids are weird! The Coriolis force.
 - b) Demo: Convection + slow rotation = Hadley circulation, jet stream
 - c) Movies and discussion: the jet stream and the weather
- 7) Fast rotation
 - a) Demo: Convection + fast rotation = weather
 - b) Pressure in a rotating fluid (geostrophic balance)
 - c) Movies: Storms and hurricanes

Finale

- 8) Putting it all together
 - a) Discussion: What are the three things necessary to make weather? What are the roles that they play?
 - b) Things we didn't cover 1: Clouds and advanced radiation
 - c) Things we didn't cover 2: The ocean circulation
 - d) How to read actual weather maps