

From Sand to Transistor: Microfabrication in a Day

Joy Cho, Matt Yeh-Saturday, November 14th, 2020

About Me – Matt

Kimble, H.J., *Nature* 453.7198 (2008). Bracher, D.O., et al., *PNAS 114.16 (2017)*.

About Me – Joy

Tell us about yourself!

- Name
- Something interesting you learned recently, or something you want to learn about!

The Axolotl Song: https://www.youtube.com/watch?v=MxA0QVGVEJw

How do we get from here...

...to here?

Essential Steps of Microelectronic Fabrication

Example Process

Week 2: Field Oxidation - 5200 A

Week 5: Poly-Si Deposition

Week 3: Active Area Photolithography Week 6: Gate Photolithography

Week 4: Gate Oxidation - 800 A

Week 6: Clear Source and Drain

Example Process (cont.)

Week 7a: Source-Drain Deposition (N+)

Week 7b: Spin-on Glass Strip

Week 7b: Drive-In Oxidation

Week 8: Contact-Hole Cut (Mask #3 - CONT)

Week 9: Metallization

Week 10: Metal Definition

Introduction to Materials

Conductors

- Low resistivity ($10^{-6} < \rho < 10^{-5} \Omega \text{ cm}$)
- Example: metals

Insulators

- High resistivity ($10^{14} < \rho < 10^{15} \ \Omega \ \mathrm{cm}$)
- Example: SiO₂ ("oxide"), Si₃N₄ ("nitride")

Semiconductors

- Somewhere in between conductors and insulators
- Typically crystalline, although using polycrystalline and amorphous semiconductors in devices in an ongoing area of research!
- Q: Why do you think people are trying to do this?

Semiconductors and the Periodic Table

Elemental: C, Si, Ge

Binary: SiC, GaAs, InP

• Ternary: AlGaAs, InGaAs

Notice any trends?

Silicon Crystal Structure

- "Diamond cubic" lattice structure
- Each atom has 4 nearest neighbors

Lattice constant (a) = 0.543 nm

Bond Model of Electrons and Holes

• When an electron breaks away from the bond and becomes a *conduction electron*, a *hole* is also formed.

Holes

- A hole is a mobile positive charge associated with a half-filled covalent bond
- For the most part, we can treat it as a positively charged particle in a semiconductor, as real as an electron.

Doping

- Conduction electron concentration: *n* [cm⁻³]
- Conduction hole concentration: p [cm⁻³]
- Intrinsic carrier concentration: n_i
 - Without doping, $n=p=n_i$
- With doping, we can change the electron or hole concentration!

Why do we want doping?

"pn junction" forms basis of many modern devices!

Nobel Prize!

Solar Cell

Why do we want doping?

MOSFET

Metal Oxide Semiconductor

Field Effect Transistor

BJT Bipolar Junction Transistor

Photolithography

• Greek: phos (light) + lithos (stone) + graphein (to write)

Next-generation EUV Lithography Tool: ASML

Photolithography Process

Why are cleanrooms yellow/orange?

New MIT Nano cleanroom

Photomasks

Dark Field Mask

What is drawn in CAD design gets exposed to light

Clear Field Mask

What is drawn in CAD design blocks light

Photoresist—Two Types

- Negative Resist
 - Polymer (molecular weight ~65000)
 - Light sensitive additive promotes crosslinking between chains when activated: "strengthens resist"
- Positive Resist
 - Polymer (MW~5000)
 - Light sensitive additive ("dissolution inhibitor") gets deactivated when exposed to light: "weakens resist"

Pros/Cons of Positive/Negative Resists

- Negative Resist
 - More sensitive to light (less exposure dose needed to completely remove the film)
 - More resistant to chemicals—better as a chemical mask when etching
 - Cheaper
 - BUT, lower resolution (why?)
- Positive Resist
 - Higher resolution
 - BUT, less sensitive → lower throughput

Printing Techniques

- Contact: Directly place mask on photoresist, 1:1 magnification
- Proximity: Slightly separate mask from photoresist, 1:1 magnification
- Projection: Use optics to project the mask pattern onto the resist, reduces the size of the image

Contact Printing

- Resolution $< 0.5 \,\mu m$
- Cheap
- But mask accumulates junk and gets damaged, limiting mask reusal

Proximity Printing

- Resolution $\sim \sqrt{\lambda g}$
 - λ : wavelength
 - g: gap (~tens of microns)
 - Limited by diffraction of light
- Mask damage reduced

Projection Printing

- Resolution can get to $\sim 0.2~\mu m$ with UV light
- Expensive (the ASML EUV tool shown earlier is >\$100M dollars!!!)

Resolution (Proximity Printing)

- Resolution: $R = k_1 \frac{\lambda}{NA}$
- $0.25 < k_1 < 1, NA = n \sin(\theta)$
- Numerical aperture NA: measure of the angles over which the system can accept light
- How to improve resolution?
 - Lower wavelength light: optics are hard!
 - Increase NA: increase the refractive index n!
 Use "immersion lithography" where a liquid is placed between the optics and the wafer.

Electron Beam (e-beam) Lithography

- Small electron wavelength: $\lambda = \frac{12.3}{\sqrt{V}}$
 - V is voltage applied (usually tens of kV)
- $NA \sim 0.002 = 0.005$
- $R \sim 1 nm$
- But slow throughput ⁽³⁾

Thermal Oxidation

Why SiO₂?

- Native oxide on silicon (stable interface)
- Great insulator: $\rho > 10^{20} \Omega \ cm$
- High breakdown threshold: $E > 10 \ MV/cm$
- Conformal growth on silicon
- Good diffusion/implant mask
- Good etching selectivity between Si and SiO₂ (to be discussed in the etching section!)

Thermal Oxidation Kinetics

Wet and Dry Oxidation

- Dry: Si + $O_2 \rightarrow SiO_2$
 - Slow growth (~3 hours to grow 200 nm of oxide at 1100°C!)
 - Higher quality oxide, usually what is used for making electronic devices
- Wet: Si + $2H_2O \rightarrow SiO_2 + 2H_2$
 - Fast growth (~3 hours to grow 1 um of oxide at 1100°C)
 - Lower quality than dry oxide (less dense, more dangling bonds), so usually used as a general "field" oxide to electrically isolate adjacent devices

Improving Oxide Quality

- Undesired charge leads to unexpected electronic characteristics
 - Metal contaminants \rightarrow mobile ions
 - Fast growth → SiO_x instead of SiO₂
- Solutions:
 - Include some HCl in the gas to react with the mobile ions (e.g. Na⁺ + Cl⁻ → NaCl)
 - When cooling down, use inert gas (Argon or Nitrogen) so no added unwanted oxidation
 - Anneal at ~450°C at end in "forming gas" (10%H₂+90%N₂) so hydrogen passivates dangling bonds

SiO,

SiO_v

Si

Thin Film Deposition

Chemical Vapor Deposition

- Low Pressure CVD
- Plasma-enhanced CVD
- Atomic Layer Deposition

Cho, J., et al. Advanced Functional Materials 30.6 (2020).

Physical Vapor Deposition

Evaporatio

CVD Kinetics

- 1 = Diffusion of reactant to surface
- 2 = Absorption of reactant to surface
- 3 = Chemical reaction
- 4 = Desorption of gas by-products
- 5 = Outdiffusion of by-product gas

- Polysilicon SiH₄ \rightarrow Si + 2H₂ (600 °C)
- Note: deposition of single crystalline films generally requires "lattice-matched substrates" and high temperatures.

Low-Pressure Chemical Vapor Deposition (LPCVD)

- Pressure ~100 mTorr, Temperature ~700-900°C
 - Atmospheric pressure is 760 Torr
- Conformal deposition!
- Deposition rate: ~few nm/minute

Plasma-Enhanced Chemical Vapor Deposition (PECVD)

- Temperature ~200-400°C
- Plasma (low pressure gas with ions + free electrons) provides extra energy to lower the process temperature!
- Deposition rate ~10-100 nm/minute
- Lower film quality

Physical Vapor Deposition—Evaporation

- Material is heated inside a vacuum chamber until it evaporates
- The molecules travel to the target substrate and form a film
- Pressure < 10⁻⁵ Torr

E-beam

Physical Vapor Deposition—Sputtering

- Plasma (usually Argon) bombards a source, knocking off atoms which travel to the substrate and get deposited
- Pressure ~1-10 mTorr

Physical Vapor Deposition—Summary

- Usually used for depositing metals, although some insulators and semiconductors can be deposited as well.
- Issue: step coverage ("line of sight" process)
 - Rotate the substrate ("planetary stage")
 - Heat the substrate
- In general, sputtering gives better control over the composition, and has better lateral thickness uniformity.
 - But the setup is quite complex.

First Process Integration Question!

How would you make these structures?

20 nm SiO2

Single crystal silicon (SCS)

500nm SiO2

SCS

First Process Integration Question!

How would you make these structures?

- 50 nm SiO₂: dry oxidation
- 500 nm SiO₂: wet oxidation
- Silicon on Insulator (SOI) wafer: "Smart Cut"
- 1. Start with 2 wafers
- Thermal oxidation of wafer 1
- 3. Ion implant hydrogen below the thermal oxide
- 4. "Wafer bonding": flip wafer 1 and place on wafer 2. Anneal to bond the wafers together.
- 5. "Bubble formation": low temperature anneal causes hydrogen gas bubbles, weakening the layer
- 6. Split the wafers and polish the rough surface.

Etching Figures of Merit

- Etch Rate
- Uniformity
- Selectivity
 - How well does the method etch material 1 while not etching material 2?
- Anistropy

• Does the method etch in all directions, or only in one direction, or somewhere in

between?

Wet Etching Kinetics

- Wet etching usually done with an acid
- Etch rate determined by temperature, concentration and the material/chemical choice

Wet Etching Summary

- Examples:
 - $SiO_2 + 6HF \rightarrow H_2SiF_6 + 2H_2O$
 - Aluminum etchant: phosphoric acid (etch aluminum oxide) + acetic acid + nitric acid (oxidant) + water (at ~30°C)
- Pros:
 - High selective, e.g. HF and SiO₂ vs Si
 - Straightforward
- Cons:
 - Isotropic*
 - Hard to control exactly
 - Particulate contamination

Reactive Ion Etching (RIE)

Deep Reactive Ion Etching (DRIE)

- Similar to RIE, but special gas chemistry forms a polymer ("sidewall inhibitor") on the sidewalls as the trench is being etched
- This protective polymer prevents undercutting, enabling the formation of very deep and narrow structures
 - Dry etching is generally anisotropic!

Ion Implantation

- lons are accelerated into the target wafer
- Because of material damage, need to anneal afterward to "heal" the wafer and let defects move into place
- Pros:
 - Can implant almost anything
 - Precise dose and depth control
 - Room temperature process
- Cons:
 - Expensive

Diffusion Doping

(1) Pre-deposition

(2) Drive-in

Second Process Integration Question!

How would you make this structure?

Second Process Integration Question!

How would you make this structure?

- 1. Oxidation
- 2. Polysilicon CVD
- 3. Ion implant, e.g. boron
 - a. deposit ion implant mask, e.g. a photoresist
 - b. photolithography to open up hole
 - c. implant
 - d. anneal
- 4. Silicon Nitride CVD
- 5. Photolithography and RIE etch nitride to open hole
- 6. Sputter Aluminum
- 7. Photolithography and etch Aluminum
- 8. Photolithography and etch nitride and poly
- 9. Flip the wafer. Wet oxidation of the back.
- 10. RIE down to open up the hole.

AFM cantilever made with similar backside processing

MOSFET Transistors

MOSFET as a Switch

- Diagram to the right is that of a "NMOS": when turned "on", the current is carried by electrons
- A "PMOS" would be the opposite: current carried by holes
- When the gate voltage applied is higher than some threshold voltage, "inversion" in the channel occurs and current can flow!

Third Process Integration Question!

How would you make a simple **PMOS**?

For reference, here is a picture of the **NMOS** from earlier (ignore the body electrode)

Example Process Flow Revisited

Week 2: Field Oxidation - 5200 A

Week 5: Poly-Si Deposition

Week 3: Active Area Photolithography Week 6: Gate Photolithography

Week 4: Gate Oxidation - 800 A

Week 6: Clear Source and Drain

Example Process Flow Revisted (cont.)

Week 7a: Source-Drain Deposition (N+)

Week 7b: Spin-on Glass Strip

Week 7b: Drive-In Oxidation

Week 8: Contact-Hole Cut (Mask #3 - CONT)

Week 9: Metallization

Week 10: Metal Definition

Thank you for listening!

Joy Cho, Matt Yeh-Saturday, November 14th, 2020

Bibliography

Images

- https://www.history.com/topics/landmarks/golden-gate-bridge
- https://en.wikipedia.org/wiki/Sahara
- https://www.review-displays.com/files/library/images/dieshot.jpg
- https://2.bp.blogspot.com/-ySaRKMedj 4/T5bINcsCU5I/AAAAAAAAAAPY/0rVhUGncgtk/s1600/FIN+410K+-c branded.png
- https://www.msesupplies.com/products/100-mm-n-type-p-doped-prime-grade-silicon-wafer-100-ssp-1-10-ohm-cm?variant=23748366762042
- https://en.wikipedia.org/wiki/Amorphous silicon
- https://en.wikipedia.org/wiki/Periodic table
- https://forum.unity.com/attachments/stock-photo-3948282-blue-tilted-bottle-jpg.56840/
- https://www.sciencemag.org/news/2019/04/amp-solar-cells-scientists-ditch-silicon
- https://en.wikipedia.org/wiki/P%E2%80%93n junction
- https://en.wikipedia.org/wiki/Bipolar junction transistor
- https://en.wikipedia.org/wiki/MOSFET
- https://en.wikipedia.org/wiki/Photoresist
- https://en.wikipedia.org/wiki/Airy disk
- https://en.wikipedia.org/wiki/Numerical_aperture
- https://www.researchgate.net/publication/269755032 Review on Micro- and Nanolithography Techniques and Their Applications/figures?lo=1
- https://www.researchgate.net/figure/SiO-2-Si-structure-observed-in-TEM-a-and-HRTEM-b-c-images fig1 235346582
- https://www.iue.tuwien.ac.at/phd/simonka/Oxidation-Models.html
- https://en.wikipedia.org/wiki/Evaporation (deposition)
- https://lnf-wiki.eecs.umich.edu/wiki/Plasma enhanced chemical vapor deposition
- https://www.semicore.com/news/71-thin-film-deposition-thermal-evaporation
- https://ece.umd.edu/class/enee416.F2010/GroupActivities/Presentation3.pdf
- https://wiki.nanotech.ucsb.edu/wiki/RIE 5 (PlasmaTherm)
- https://en.wikipedia.org/wiki/Deep reactive-ion etching#Bosch process
- https://www.nanoandmore.com/uploads/media/default/0001/02/bd42cbe1fa89aa52039b6c20ba1f50bab477b8d4.jpeg

Book Figures

- Jaeger, Richard C. Introduction to microelectronic fabrication. Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2002.
- Hu, Chenming. Modern semiconductor devices for integrated circuits. Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2010.
- Sedra, Adel S., et al. *Microelectronic circuits*. New York: Oxford University Press, 1998.

