

Derek Sutherland

MIT Department of Nuclear Science and Engineering

MIT Department of Physics

12 March 2011

Nuclear Energy

- What makes nuclear energy different from other energies, such as fossil fuels like coal and oil?
- What is the physics of nuclear energy, and why do we wish to use it for energy production?
- Any questions you may have at the beginning of this lecture?

Chemical Energy Densities

Chemistry

 $U = -e^{2}/r^{2}$ Distance ~ 10^{-10} m
Order of Magnitude ~ eV

The maximum energy for any chemical reaction, which involves the rearrangement of electrons, is on the order of electron-volts.

Energy Density ~ 30-40 MJ/kg

$E = mc^2$

Energy-Mass equivalence tells us that mass is able to be "converted" into energy.

Nuclear Energy Densities

- Fission: The splitting of heavy nuclei, normally with the introduction of a thermalized neutron into U-235. ~ 88,000,000 MJ/kg
- Thermonuclear Fusion: Fusing of light nuclei, like heavy hydrogen deuterium and tritium, in an experimentally created stellar environment.
 ~576,000,000 MJ/kg

$$U = -e^2/r$$

Distance $\sim 10^{-15}$ m

Order of Magnitude ~ MeV! A million times greater than chemical reactions fundamentally.

Huge Amounts of Energy

- Obviously, the amount of energy from nuclear reactions cannot be matched by any chemical reaction due to the fundamental length scales over which each interaction occurs.
- This large amount of energy, the plentiful amounts of fuel, and environmental considerations, are why we want to use it for energy production.

Fission Power Plants

 There are many fission power plants working around the world today, with some countries, like France, having roughly 80% of their energy coming from them.

Fission Safety

- Present reactors have many redundant passive safety features that form a negative feedback network, so that if something gets out of line, it drives the reactor to a lower power level and ultimate shutdown instead of a run away power increase, and meltdown.
- The storage of radioactive waste is still a long-term concern.

Fusion Power Plants?

- There are no working commercial fusion power plants today, due to how much more complicated fusion is than fission to achieve here on Earth.
- Fission occurs at about room temperature with the right reactor set-up.
- Artificial (non-gravitational) fusion occurs at 100,000,000 degrees, in a complicated (and invisible) magnetic "bottle," but first...

Plasmas!

- A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective behavior.
- Occurs at relatively high temperatures, around 160,000 K for hydrogen for example.
- Since plasmas consists of charged particles, magnetic fields can have an effect on the trajectories of these particles per the Lorentz Force.
- Magnetic fields will be used to confine particles in a plasma, which want to expand as fast as they can to regain thermodynamic equilibrium with their surroundings, so we can get a large enough fusion power density.

Natural Plasmas

Fusion Reactions

Requires high pressures ~ 5 atms, high temperatures ~ 100,000,000 K, and confinement t ~ 3-4 seconds.

 Confinement
 Confinement is really the most dynamic area of study, which design is the best?

Magnetic Confinement Schemes

Other Confinement Schemes

Summary of Nuclear Energy

- Fission is currently the mode of nuclear energy production, and probably will be the dominate method throughout the next century. Plenty of fuel to use; storage of waste is still a problem, but no greenhouse problems.
- Fusion is a promising energy, though much work is left to be done before becoming an industry. ITER is presently the leading project in the world for magnetic confinement.