Notes On Topology
Day 1
Billy Cember

Definition 1.1: For some set, A and a function, f, defined on a domain B D A, we say that A is closed
under f if Vz € A, f(x) € A.

Example 1.2: Take the set of even intergers and the function f defined on Z (the integers) sending
x — —x. The even integers are closed under f.

Definition 1.3: A function is an ordered triple consisting of a set called the domain, a set called the
codomain, and a called the graph. A graph is a (possibly empty) set consisting solely of ordered pairs of
an element in the domain and an element in the codomain such that for each element z in the domain there
is exactly one ordered pair containing .

**Exercise 1.4: i. Show that if a function has empty domain (i,e. the domain is the empty set), then its
graph is empty (i.e. the graph is the empty set).

ii. Show that a function cannot have empty codomain but nonempty domain.

Definition 1.5: A function is injective or one-to-one if for each element in the codomain, there is at
most one ordered pair in the graph containing that element. A function is surjective or onto if for each
element in the codomain, there exists an ordered pair in the graph containing that element. A function that
is both injective and surjective is called bijective.

Definition 1.6: The image of a function is the set of elements in the codomain that are each contained
in some tuple in the graph.

Exercise 1.7: A function is surjective iff (if and only if) its image and codomain are the same.

Definition 1.8: The inverse image of a set, A, in the codomain of f is the set of points = in the the
domain such that f(x) € A. We denote this set f~1(A).

Exercise 1.9: i. A function is surjective iff the inverse image of any nonempty set is nonempty.

ii. A function is injective iff the inverse image of any singleton (a set consisting of one element) is a
singleton or empty.

Definition 1.10: The union of a family of sets, {X;}:cr, which we write as | J,.; X; (where I denotes an
index set) is the set {z|3i € Iz € X,}. The intersection of a family of sets, {X;}icr, which we write as
Micr Xi , is the set {z|Vi € I = € X;}. For finite union (respectively intersection) we may write X; U...U Xo.

Exercise 1.11: What is {1,2,3}U(3,4,5}? What is {1,2,3}N{3,4,5}. What is {1,2,3}U{1,2,3}? What
is {1,2,3} n{4,5,6}7

*Exercise 1.12: What is the union of an empty family of sets (i.e. {X;}icg)?

Definition 1.13: Two sets are disjoint if there intersection is empty. A is a subset of BifVr € A, z € B.

Exercise 1.14: Show that any set is a subset of interself.

Definition 1.16: The empty set, which we denote ), the set containing no elements.

Exercise 1.15: Show that the empty set is a subset of every other set.

Definition 2.1: A topology on a set X is a subset of P(X) (i.e. the power set of X, which is the set of
all subsets of X) that is closed under arbitrary union and finite intersection. We call element of P(X) in
the topology and open sets. We call a set X a topological space, or simply a space, if it endowed with a
topology. More formally, an ordered pair with two elements, a set and a topology on that set, is a topological
space. Note, that these two definitions actually specify different sets. Unless otherwise notes, if we are refer
to a topological space, we are referring to the underlying set . The set of all open sets in a topology will be
denoted Op(X).

Proposition 2.2: For any topology, T, X € T and () € T..

Proof: For the former take the empty intersection of sets in the topology and for the latter take the
empty union of sets in the topology.

Note on notation: If an exercise is written as a statement (for example, “Any set with property A also
has property B”), then the purpose of the exercise is true prove that statement)

Exercise 2.3: For any set X, there is a bijection between the set of all topologies on X and P(X).

Definition 2.4: For a set X, the discrete topology is the topology consisting of all subsets of P(X). The
indiscrete topology is the topology consisting only of X and ().

Exercise 2.5: i. Show that the discete topology and the indiscete topology are actually toplogies.



ii. On what set are the discete topology and the indiscrete topology the same?

Definition 2.6: For two topologies 77 and Thon a set X, T is finer than T, if 77 D T,. Tj is coarser
than T5 is Ty C T,. T} and T5 are comparable if one is finer than the other.

Exercise 2.7: i. For any topology, T', there is exactly one topology that is both finer and coarser than T

ii. Give an example of two topologies (on the same set) that are not comparable.

Example 2.8: The discete topology is finest topology. That is, the discrete topology is finer than every
other topology. The indiscete topology is the coarsest topology. To put this another way, in the set of
topologies (on a set) ordered by the relation (T > 7" is T is finer than T'), the discrete topology is the
greatest element and the indiscrete topology is the least element.

Definition 3.1: A subset of X is closed (in a topology T') if it is the complement of an open set.

Proposition 3.2: The set of all closed sets is closed under the operations of finite union and arbitrary
intersection.

The following proof relies on De Morgan’s Laws, which state X \;c; 4i = N;c; X\ A; and X\, 4i =
Uier X \ 4; (where X \ @ denotes all of the elements of X that are not in @ and Q C X)

It is a good exercise to try to prove De Morgan’s Laws on your own, but I will prove them on Saturday
(hint: two sets are equal if and only if they contain the same elements, meaning they are subsets of each
other).

Proof: We denote a closed set by C' and an open set by U.

UL, Ci=UX\U;=X\N,U;=X\U =’ which is closed.

Nicr Ci = Nic; X\ Ui = X\ U;e; Ui = X \U" = C’, which is closed.

Exercise 3.3: Any topology can be specified by a collection of subsets of P(X) that is closed under
arbitrary intersection and finite union.

Definition 3.4: A basis B for a topology 7" on X is a subset of T" that satisfies the following properties:

(1) Vz € X 3B € B such that z € B.

(2) For By, Bs € B, and any point 2z € B;NBsy there is a Bs is B such that B3 C B1NBy and x € B1NBs.

(3) For all U € Op(x) and Vz € U 3B € B such that B C U and x € B.

*Exercise 3.5: Any subset of P(X) satisfying conditions 1 and 2 specifies a topology (so show that such
a set is closed under finite intersection and arbitrary union).

Lemma 3.6: For any topology with a basis, any open set U is the union of basis elements that are subset
of U.

Lemma 3.7: A set is a basis for at most one topology.

Proposition 3.8: The folowing are equivalent (for a set of statements, we say statements are equivalent if
any statements implies all of of the other statements):

(1) T is finer than T".

(2) There exists bases B and B’for T and T’ (respectively) such that for any element B’ of B’and any
x € B’, we can find a B € B such that B C B’ and z € B.

Proof: 1 = 2: Suppose 1 is true. Then every open set in T is open in 7. Since B’ C 7' and T" C T,
B’ ¢ T. We are done by condition 3 of definition 3.4.

2 — 1: Take an open set, U in T. Write this open set as a union of basis elements. For each element in
the union there exists a B’ € B’ containing that element, so by assumption we can find a B € B containing
that element. For each z € U, choose such a B containing X. Thus, U is the union of elements of B,
meaning it is open in 7'.

Side note 3.9: We are using the axiom of choice in the second part of the proof (where?). If we wanted
to avoid using the axiom of choice, we could reformulate the proof as a proof by contradiction (how?).

Definition 3.10: A subbasis or subbase is a subset, S, of P(X) such that J, g5 = X.

*Exercise 3.11: For any subbasis there is a finest topology containing this subbasis. We say that this
topology is the topology generated by the subbase.

Proof 1: Constructive proof

Proof 2: Show that the arbitrary intersection of a set of topologies is either empty or a topology.

Defition 4.1: (simplified) The Cartesian product of a family (synonym for set) of nonempty sets,
{X;}ier is the ordered collection of all sets containing exactly one element from each X; and no other
elements. We call an ordered set of 1 element from each x; a tuple.



Definition 4.2: (abstract) The Cartesian product of a family (synonym for set) of sets, {X;};cr is the
collection of all functions with domain I and codomain (J,.; X; such that f(i) € X;.

** Exercise 4.3: Under definition 4.2, what the cartesian product of the empty set (we call such a
product, the empty product)? What is the Cartesian product of {X;}icr if 3i € I such that X; = 0. (To
solve this problem, you must apply the definition of a function (1.3). Namely, how many (if there are any at
all) functions with empty domain and empty codomain? What about function with nonempty domain but
empty codomain?)

Definition 4.4: For a family of topological spaces, the product topology on the cartesian product of
the underlying power sets is the topology generated by taking as a subbase all tuples such that each element
in the tuple is an open set in the respective topological space and all but finitely many elements in the tuple
are the entire topological space.

Definition 4.5: The projection map 7; from a Cartesian product is the map sending an element of
the Cartesian product to its i*" coordinate. The product topology is the topology by taking as a subbase
{m;}(U)|i € Tand U € Op(X;)}.

* Exercise 4.6: Show that definitions 4.4 and 4.5 are equivalent (that is, show that the topologies generated
in each definition are the same. To do this, one must be able to construct a topology from a subbase, so you
should already have done a constructive proof of exercise 3.11).

Exercise 4.7: Show that the subbase in definition 4.4 is actually a basis.

Definition 5.1: For a subset, A, of a space X, the subspace topology is that generated (by the subbase)
of all sets of the form (U N A where U € Op(X)).

Exercise 5.2: Show that every open set in the subspace topology can be written as U N A for some
U € Op(X).

Exercise 5.3: Every closed set in the subspace topology can be written as C N A where C' is a closed set
(in the topology on X). For any closed set C in X, C'N A is closed in A.

Exercise 5.4: Show that if A is open, then the subspace topology is simply the family of open sets in X
that are subsets of A.

Definition 6.1: The interior of an element B of P(X) is the greatest (in respect to the subset ordering;
A < B if A C B) open set that is a subset of B.

Definition 6.2: The closure of an element B of P(X) is the least closed set that is a superset of B (that
is, the least closed set containing B).

Exercise 6.3: For any B € P(X), the interior is the union of all open sets contained in B and the closure
is the intersection of all closed sets containing B. The converse is true for both statements.

Notation 6.4: We will denote the closure of B by B and the interior of B by Int(B).

Example 6.5: For any space X, X = X, Int(X)=X, § = (}, Int(0))= 0.

Exercise 6.6: For any point  and set B, x € B iff every open set containing z intersects B.

Definition 6.7: x is a limit point of B iff every open set containing x intersects B at a point other than
x itself.

Exercise 6.8: € B iff z € B or z is a limit point of B.

Exercise 6.9: For any closed set, A, A = A.

Lemma 6.10: A set is closed iff it contains all of its limit points.

Definition 7.1: A function between two topological spaces (i.e. the domain and codomain are each sets
with a topology) is continuous if the inverse image of any open set is open.

Example 7.2: Any function (between topological spaces) with domain that is discrete is continuous.

Definition 7.3: A function is open if the image of any open set is open.

Example 7.4: Any function with codomain that is discrete is open.

Definition 7.5: A function is closed if the image of any closed set is closed.

Exercise 7.6: A bijective function is continuous iff the inverse function is open.

Exercise 7.7: A bijective function is open iff it is closed.

Definition 7.8: A homeomorphism is a bijection that is open and continuous.

Side note 7.9: In the category of topological spaces, the morphisms are continuous functions and a
morphism in the category is a homeomorphism iff it is an isomorphism.



Proposition 7.10: The composition of two continuous functions is a continuous function.

Proof: Take continuous function: f: G — H and g: H — I. We note that (fog)~'(A4) = f~1(g7(4))
(prove this!). Thus, for an open set U in I, (f o g)~1(U) = f~1(¢g~1(U)), which is the inverse image under
f of an open set, since g is continuous. Since f is continous, such a set is open.

Definition 7.11: A cover of a set X, is a set of open sets, U; in X, such that | JU; = X (more precisely
this is an open cover). A subcover of a cover is a cover that is a subset of the original cover.

Proposition 7.11 (gluing): Suppose we have two spaces X and Y and a cover of X such that on each
element of the cover we have a continuous function into Y defined on that open set, and such that for any
two elements in the cover, the respective functions agree on their intersection. Then there exists a continuous
function from X into Y such that the function restricted to any element of the cover agree with that element
of the cover.

Proof: Define f(z) = fi(z) where f; is a function on an element of the cover containing z. f is well-defined
since if any two of our functions agree on their intersection. f is defined everywhere since we have a cover. For
any open set U in Y, denoting elements in our cover by C; f~H(U) = U<, (f "1 U)NC:) = U, (f 1 (U)NCy),
which is open since each f; is continuous and each C; is open.

Now let us look at an actually example of a topological space!

Let us take the set of real numbers, R, (we will discuss a formal construction of the reals) with the
topology generated by open balls. That is, sets of the form {x||zg — 2| < €}, which we will denote B(z, €).

Exxercise 8.1: What we just specified is actually a basis.

Exercise 8.2: Any open set that is not () or X can be written as a disjoint union of open intervals, that
is, sets of the for the {z|a < z < b}.

Lets give some properties and show that R satisfies those properties.

Definition 8.3: A space is Hausdorff or T; if for any two distinct points, there are disjoint open sets
containing each.

Proposition 8.4: R is hausdorff.

Take two points, a — b. |a — b| = d, so take the open sets B(a,d/2) and B(b,d/2). (Check that these sets
are actually disjoint.)

Definition 8.5: A space is said to be compact if every open cover has a finite subcover.

Proposition 8.5: R is not compact.

Take the open cover consisting of B(z,1) for z € Z.

Now we will prove the first “hard” result of this course (note that statements 2 and 3 are named after
mathematicians!).

** Proposition 8.6: The following are equivalent for a subset A of R:

(1) A is compact.

(2) A is closed and bounded (Heine-Borel).

(3) Any sequence of points in A has a convergent subsequence (Bolzano-Weierstrass).

Proof: 1 = 2: Exercise.

2 = 3: Claim 1: On any bounded set in R, for any sequence on that set, we can find a monotonic
subsequence.

Since this subsequence is on a bounded set in A, it has a least upper bound (respectively greatest lower
bound if our sequence if decreasing). Such a least upper bound, z, is a limit point of A, so since A is closed,
x € A. Our subsequence converges to x.

3 = 1: Exercise.



