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1 So far...

• Intuitively, what is a (natural) number?

– A way to count collections of objects.

• To have a coherent mathematical system to work with numbers, we must have rigorous formal defini-
tions for them.

– Informal definitions often lead to various paradoxes and other issues (for example Russel’s paradox
in set theory).

• One useful way to formalize concepts is with an axiomatic system.

– An axiomatic system has a fixed set of axioms which are statements assumed to be true.1

– A statement is said to be true if it follows logically from the axioms and other true statements.
Such statements are often labelled theorems.

• We gave a formal definition of the natural numbers via an axiomatic system. These were the so-called
Peano axioms.

• We inductively defined addition and subtraction on N. We also defined an order on N by stating what
it means for a number to be greater than another.

Today we will look past the naturals and define the integers. Note that while formally defining the
integers we will assume that most properties of natural numbers that we learn in school can be (and have
been) proved under our formalism. In theory we could go through and prove every single property we need,
but that would be neither fun nor time-efficient.

Throughout this document we have marked a few results as “exercises”. These aren’t intended to be
“homework” as such, but are rather results that we think you could prove in your spare time.

Administrative Note: There was a typo in the notes for day 1 in the teacher email for this course.
Please be sure to use the email at the top of this document. We have uploaded an updated version the day
1 notes to course documents which can be accessed through the ESP website (the only change is the email).

2 Thinking Past the Naturals

Think of the statement 1 + x = 4. Does there exist a natural number x such that the statement becomes
true? Yes! We know that x = 3 makes the statement true. But what about the statement 4 + x = 1? We
know that adding natural numbers can only give larger natural numbers, and since 1 < 4, this means that
there is no x ∈ N that will make our statement true.

Let us try to generalize these equations a bit more. Let a and b be natural numbers. Let us define Ea,b(x)
to be the statement that a+ x = b. We call an x ∈ N such that Ea,b(x) is true a solution of the equation
Ea,b. We observe that a solution to Ea,b exists if and only if a ≤ b.

Our aim is to find a meaningful “enlargement” of the set N such that all equations Ea,b have solutions
in that set. This set will end up being Z, the set of integers.

1Technically we would also need to specify a set of rules of inference to work with statements, but as we said for the purposes
of this course we will work with intuitive logical rules. See Section 4.2 from the day 1 notes.
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2.1 Uniqueness of Solutions to Equations

Before we even define integers, we show that solutions to equations Ea,b (which we assume will always exist
in the system we will later define) are unique. In doing so, we will also assume that a + operation is defined
which is consistent with the addition of natural numbers. Let r and s be solutions to Ea,b. Then we have:

a+ r = b

a+ s = b

By transitivity of equality, we get that a+ r = a+ s. We know that we can cancel a from both sides of the
equation (that’s an easy result to prove using the definition of addition on N), and so we get r = s. Thus
solutions to equations in our extended system would be unique.

2.2 When can two equations have the same solution?

Suppose Ea,b and Ec,d have the same solution r. Then we get:

a+ r = b

d = c+ r

Adding these equations, we get a+ r+ d = b+ c+ r, and cancelling r from both sides, we get a+ d = b+ c.
Thus we see that Ea,b and Ec,d have the same solutions if and only if a+ d = b+ c. In symbols:

(∃x Ea,b(x) ∧ Ec,d(x)) ⇐⇒ a+ d = b+ c

3 Equivalence Relations

Suppose that you want to categorize pencils based on color. Consider creating a box for each possible color
and throwing the pencils into their respective boxes. For pencil x in box B, x certainly has the same color
as itself. Additionally if x has the same color as y then both are in the same box, and of course y has the
same color as x. Finally if x and y have the same color and y and z do, then clearly x and z are in the same
box.

What if the property of the object is harder to get our hands on? Is it possible to obtain these boxes
based on a relation with the nice properties we discovered, instead of the other way around? In fact, yes!
This is the notion of an equivalence relation.

Definition 1. An equivalence relation on a set S is a binary relation ∼ with the following properties:
For any x, y, z ∈ S,

1. x ∼ x (reflexivity)

2. x ∼ y =⇒ y ∼ x (symmetry)

3. x ∼ y and y ∼ z =⇒ x ∼ z (transitivity)

We saw in lecture 1 that = is an equivalence relation. Now we want to show that an equivalence relation
has the sought after partitioning property.

Definition 2. Take a ∈ S The equivalence class of a, denoted [a] is given by

{x ∈ S : x ∼ a} (1)

These are the “boxes”... but we still don’t know if they act like boxes!

Theorem 1. Let S be a set with an equivalence relation ∼. For every a, b ∈ S, either [a] = [b] or [a] and [b]
are disjoint.
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Proof. Suppose that [a] and [b] are not disjoint. Then there is an element s in common, so s ∼ a and s ∼ b.
We show that [a] ⊆ [b]. Take any x ∈ [a]. Then x ∼ a. By symmetry, a ∼ s. Then by transitivity x ∼ s.
Again by transitivity, using s ∼ b, we get x ∼ b. Thus x ∈ [b], giving [a] ⊆ [b]. By reversing the roles of a
and b we get [b] ⊆ [a], and so [a] = [b], as desired.

Now we know that two boxes are either the same or completely disjoint, but do we know that every
element is in a box? Yes, this follows directly from reflexivity. Hence equivalence classes partition the set on
which an equivalence relation is defined.

4 Defining the Integers

Notice that under our desired system, equations Ea,b of natural numbers a and b have unique solutions in the
integers. So we could identify a natural number with an equation Ea,b whose solution it should be. A problem
with this is that the same integer could also be an solution to other equations of natural numbers, and so
we would have many ways to define the same number, which would make our definition faulty. However, the
general idea of identifying integers by equations to which they are solutions is still valid. Could we somehow
represent integers by the entire class of equations it is a solution to?

Definition 3. For the rest of this class, we define the relation ∼ to be a relation on pairs of natural numbers.
Given a, b, c, d ∈ N, we define (a, b) ∼ (c, d) if Ea,b and Ec,d have exactly the same solution, i.e. if a+d = b+c.

Exercise. Verify that ∼ is an equivalence relation. Do this by checking that it follows the three defining
properties of equivalence relations from Definition 1.

Since ∼ is an equivalence relation, it must have disjoint equivalence classes that partition the set N× N
(the set of pairs of natural numbers). Take a pair (a, b) ∈ N×N. Let us denote the equivalence class of (a, b)
under ∼ with [a, b]. Which pairs are in [a, b]? These are the pairs which are equivalent to (a, b), and so are
all pairs (c, d) such that Ea,b and Ec,d have the same solutions. Thus the equivalence class [a, b] is a set of
pairs of natural numbers which represent a class of equations with the same solution. In fact, it contains
representations of all such equations. We will now define the integers to be these classes.

Definition 4. Each equivalence class [a, b] of the natural numbers under ∼ is an integer. The set of all
such equivalence classes is the set of integers which we denote with Z.

Now that we have a definition for the integers, we are left with a few different gaps to fill:

• We said that Z extends N. In what sense can we consider N to be a subset of Z?

• We need to come up with a way of adding, multiplying, and ordering integers that is compatible with
the way we add, multiply, and order natural numbers.

• We still have to verify that the integers truly can be considered solutions of the equations Ea,b.

4.1 Finding N in Z
We define a function ι : N→ Z by ι(n) = [0, n]. We use this function to “identify” natural numbers n with a
corresponding integer ι(n). Before we do that, we must verify that ι is 1-12, i.e. it doesn’t send two different
natural numbers to the same integer (if it did it would be a bad way to identify the naturals).

Theorem 2. ι : N→ Z defined by ι(n) = [0, n] is 1-1.

Proof. Suppose ι(a) = ι(b) for some a, b ∈ N. Then [0, a] = [0, b]. This gives us that (0, a) and (0, b) are in
the same equivalence class, i.e. (0, a) ∼ (0, b). By definition of ∼ we have 0 + b = a+ 0 ⇐⇒ a = b, and so
we are done.

2A function f is 1-1 (also called one-to-one or injective) if for all x, y we have f(x) = f(y) ⇐⇒ x = y.
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When we say that the natural numbers are a subset of the integers, we really mean that the corresponding
integers as defined by ι behave the same as the original natural numbers, and so can in some sense be
considered “the same” as the originals. We will verify this when we define addition and multiplication.

Exercise. Show that for any a, b ∈ N we have:

1. [a, 0] = [b, 0] ⇐⇒ a = b

2. [a+ b, a] = [b, 0] and [a, a+ b] = [0, b]

These are some facts that might be useful later.

5 Addition on the Integers

As we said before, we want integers to (intuitively) represent hypothetical solutions to equations of the form
Ea,b. We use this idea to guide our definition of addition. Suppose r and s are hypothetical solutions to
Ea,b and Ec,d respectively. What equation would r + s be a solution of? Well, we have

a+ r = b, and

c+ s = d

which we can add to get
(a+ c) + (r + s) = (b+ d)

In other words, r+s would be the hypothetical solution for Ea+c,b+d. This motivates the following definition:

Definition 5. Given any integers [a, b] and [c, d] we define the sum [a, b]⊕ [c, d] as:

[a, b]⊕ [c, d] = [a+ c, b+ d]

We use the symbol ⊕ instead of just + to distinguish it from natural number addition and to remind
ourselves that they are two differently defined operations. We will switch over to just + later.

An important aspect of definitions involving equivalence classes is to make sure that the definition does not
change if we change the representatives we use. For instance let (a1, b1) ∼ (a2, b2) and (c1, d1) ∼ (c2, d2). In
this case [a1, b1] = [a2, b2] and [c1, d1] = [c2, d2]. We need to make sure that [a1, b1]⊕[c1, d1] = [a2, b2]⊕[c2, d2],
because all of these are equally reasonable representatives for their respective equivalence classes. This is
done in the following theorem:

Theorem 3. Suppose (a1, b1) ∼ (a2, b2) and (c1, d1) ∼ (c2, d2). Then (a1 + c1, b1 + d1) ∼ (a2 + c2, b2 + d2).
Hence [a1, b1]⊕ [c1, d1] = [a2, b2]⊕ [c2, d2] which means that our definition is coherent.

Proof. Since (a1, b1) ∼ (a2, b2) and (c1, d1) ∼ (c2, d2), we have (from the definition of ∼):

a1 + b2 = b1 + a2

c1 + d2 = d1 + c2

Adding these and using associativity we get:

(a1 + c1) + (b2 + d2) = (b1 + d1) + (a2 + c2)

which is simply by definition gives us (a1 + c1, b1 + d1) ∼ (a2 + c2, b2 + d2).

The following theorem contains a few very important properties of integer addition.

Theorem 4. Let a, b, c, d, e, f ∈ N. Then the following hold:

(a) [a, b]⊕ ([c, d]⊕ [e, f ]) = ([a, b]⊕ [c, d])⊕ [e, f ] (associativity)

(b) [a, b]⊕ [0, 0] = [a, b] = [0, 0]⊕ [a, b] ([0, 0] is an additive identity)
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(c) [a, b]⊕ [b, a] = [0, 0] = [b, a]⊕ [a, b] (existance of additive inverses)

(d) [a, b]⊕ [c, d] = [c, d]⊕ [a, b] (commutativity)

Proof. These properties can be verified quite easily using the definition of addition. We leave this as an
exercise to the reader.

Remark. 1. Notice that part (b) shows that [0, 0] is the additive identity for the integers. In other words,
this is the (integer) ‘0’ we are used to. It is fairly straightforward (especially after we introduce groups)
to show that the additive identity is unique.

2. Part (c) shows that [b, a] is an additive inverse of [a, b]. We often write this as [b, a] = −[a, b]. Thus we
can define subtraction to mean [a, b] − [c, d] = [a, b] + (−[c, d]) = [a, b] + [d, c]. Similar to the identity,
it is easy to show that the additive inverse of a given integer is unique.

3. It is easy to see that −(−[a, b])) = [a, b].

Theorem 5. ι preserves addition. That is, for any a, b ∈ N, ι(a + b) = ι(a) ⊕ ι(b). Hence addition for
natural numbers is indeed extended by integer addition.

Proof.

ι(a) + ι(b) = [0, a] + [0, b]

= [0 + 0, a+ b]

= ι(a+ b)

Now that we have shown that addition of naturals is extended by integer addition, it makes sense to
simply use + instead of ⊕ to represent both integer and natural number addition. At this point, since we
have identified n ∈ N with an integer ι(n), we would like to start denoting the integer ι(n) as just n. If we
do need to distinguish between the natural number and integer n, we will specify as necessary.

Theorem 6. Every integer is either a natural number or the additive inverse of a natural number. Hence it
makes sense to write Z = N ∪ −N where −N is the set of additive inverses of natural numbers (as integers,
via ι of course).

Proof. Take an arbitrary integer [a, b]. If a = b, then [a, b] = [a, a] = 0, which is a natural number. If a 6= b,
then either a < b or a > b. If a < b then there is a natural number p such that a + p = b. Hence we have
a+p = b+0 ⇐⇒ (a, b) ∼ (0, p). This means that [a, b] = [0, p], and so [a, b] is a natural number (p, namely).
If a > b then there is a natural number q such that a = b + q. We have a + 0 = b + q ⇐⇒ (a, b) ∼ (q, 0).
So [a, b] = [q, 0] = −[0, q], which means [a, b] is the additive inverse of a natural number.

5.1 Algebraic Structure of Z under Addition

This section is a quick note introducing the concept of a group, which is an important structure in abstract
algebra.

Definition 6. A group is a set X equipped with a binary operation ? such that the following properties
hold:

1. For all a, b ∈ X, a ? b ∈ X.

2. For all a, b, c ∈ X, a ? (b ? c) = (a ? b) ? c (associativity).

3. There is an element e ∈ X such that for all a ∈ X we have a ? e = a = e ? a (existence of an identity).

4. For every a ∈ X there exists an inverse element, a−1 ∈ X such that a ? a−1 = e = a−1 ? a (existence
of inverses).
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By definition, integer addition is closed, i.e. for every a, b ∈ Z, a + b ∈ Z. Also, we have shown that
integer addition is associative, that 0 is an additive inverse, and that for every integer a there is an element
−a such that a+ (−a) = 0. This means that the integers under addition are a group. Sometimes this is also
written as (Z,+) is a group.

On the other hand, (N,+) is not a group. Why? Because condition 4 in Definition 6 is not met, since
natural numbers (except 0) do not have additive inverses which are also natural numbers.

It is possible to prove a lot of neat things about groups. Among others this includes the uniqueness of
inverses and the identity element, and a lot of other properties. What’s even cooler is that these results apply
to every group out there. This means that results proved for groups not only hold for the integers under
addition, but also for other groups including the invertible matrices under multiplication (the “general linear
group”), permutations under composition (the “symmetric group”), and many more. Unfortunately this is
out of the scope of this class. If you are interested, we encourage checking out [3] for a quick introduction
to group theory, or [2] for a more comprehensive introduction (the latter is a standard algebra textbook).

6 Ordering the Integers

We can extend the ordering on the natural numbers to the integers.

Definition 7. Let m,n ∈ Z. Then m ≤ n if there is some k ∈ N such that m + k = n. With m < n, we
require that k 6= 0.

Theorem 7. For any m,n, p ∈ Z

1. Either m < n, m = n, or m > n.

2. The following are equivalent: n ∈ N, n ≥ 0, −n ≤ 0.

3. m < n ⇐⇒ −n < −m.

4. m < n and n < p implies m < p.

5. m < n =⇒ m+ p < n+ p.

Proof. This proof is left as an exercise to the reader (just push around the definitions).

Definition 8. We say an integer n is positive if n > 0 and negative if n < 0.

7 Multiplications on the Integers

To decide how we should define multiplication, we think back to our equations of the form Ea,b(x). Let
r = [a, b] and s = [c, d], that is r satisfies a+ r = b, and s satisfies c+ s = d. What equation would rs be a
solution of? When we multiply these equations and add ac to both sides, we get

(a+ r)(c+ s) = bd

ac+ rc+ as+ rs+ ac = bd+ ac

(a+ r)c+ a(c+ s) + rs = bd+ ac

(bc+ ad) + rs = bd+ ac.

Thus we see that rs is a solution to Ebc+ad,bd+ac, and so we propose the following definition for multiplication
(to distinguish this from multiplication over N, we temporarily use the symbol ⊗).

Definition 9. For any [a, b], [c, d] ∈ Z, we define [a, b]⊗ [c, d] by

[a, b]⊗ [c, d] = [ad+ bc, bd+ ac]

As was done with addition, we are left to show that ⊗ is a well defined operation.
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Theorem 8. If [a, b] = [w, x] and [c, d] = [y, z], then [a, b]⊗ [c, d] = [w, x]⊗ [y, z].

Proof. The proof is left as an exercise to the reader.

Again as we did with addition, we show that for natural numbers, ⊗ coincides with our definition of
multiplication from last class. Take n,m ∈ N. Then ι(n)⊗ ι(m) = [0, n]⊗ [0,m] = [0 ·n+m · 0,mn+ 0 · 0] =
[0,mn] = ι(mn).

Thus it is safe to adopt the usual notation, which we do in the theorem below.

Theorem 9. Take any m,n, p ∈ Z. Then

1. m(np) = (mn)p

2. mn = nm

3. m · 1 = 1 ·m = m

4. m > 0 and n < p implies mn < mp

5. m(n+ p) = mn+mp

6. If mn = 0 then m = 0 or n = 0.

7. If m 6= 0 then mn = mp ⇐⇒ n = p

Proof. We leave the proof as an exercise to the reader.

7.1 Algebraic Structure of Z under Multiplication

Is (Z, ·) a group? Well, to be a group it would have to satisfy the four defining properties of groups (see
Definition 6). By the way we defined it, multiplication is closed, i.e. integers multiply to give integers. Also,
we proved above that multiplication is associative, and that 1 is a multiplicative inverse. However, we know
that inverses under multiplication do not exist in the integers. For example, it is easy to verify that there
is no integer x such that x · 2 = 1, which means that 2 has no multiplicative inverse in the integers. This
means that (Z, ·) is not a group.

Definition 10. A set X equipped with a binary operation ? is a monoid if all the criteria for being a group
are met except possibly the existence of inverses.

Is (Z, ·) a monoid? Yes! We now define a useful algebraic structure which ties together both our
operations.

Definition 11. A set X equipped with two binary operations + and · forms a ring if:

1. (X,+) is a group

2. For all a, b ∈ X, a+ b = b+ a (+ is commutative)

3. (X, ·) is a monoid

4. · is distributive over +, i.e. for all a, b, c ∈ X we have

(a) a · (b+ c) = a · b+ a · c
(b) (b+ c) · a = b · a+ c · a

Notice that we have verified all properties of rings for Z under addition and multiplication. Hence we
say that (Z,+, ·) is a ring.

Remark. 1. While the definition of a ring uses the symbols + and ·, it is important to note that these
do not refer to addition and multiplication. Rather, they are just symbols referring to two binary
operations on the set. There can, and do, exist rings where the two operations are nothing like
addition and multiplication.

7



2. Notice that · does not need to be commutative in the definition of a ring. Matrix rings are examples
of rings that have a non-commutative multiplication operation.

While ring theory is outside the scope of this course, we recommend [2] for a more in-depth explanation
of rings and various other algebraic facts relating to them.

8 Limitations...

How well do the integers handle solutions to other very useful equations? Consider the statement Ma,b(x) :
ax = b. There are many situations where this equation has no solutions.

Theorem 10. Suppose a ∈ Z and a > 1. Then there is no b ∈ Z such that ab = 1.

Proof. This is a relatively straightforward exercise using some of the theorems involving ordering. We leave
this to the reader.

This is a real defect in our system, so next class we will go through a similar process to enlarge Z to a
system just powerful enough to solve any Ma,b (except when a = 0 and b 6= 0).

9 Countability

Definition 12. A function f : A→ B is bijective if

• For any x, y ∈ A, if f(x) = f(y) then x = y. (f is injective)

• For any b ∈ B, ∃x ∈ A such that f(x) = b. (f is bijective)

Definition 13. A set A is countable if there is a bijection between A and some subset of N. A is countably
infinite if there is a bijection between A and N itself.

N is of course countable, in particular by considering the bijection f(x) = x. Z is also countable. Let it
be an exercise to find the bijection and prove it!

Definition 14. We say that two sets A and B are equipotent if there exists a bijection between A and B.

It isn’t too hard to see that equipotence is an equivalence relation on the set of all sets. This means that
all sets (yes, all of the uncountably infinite sets out there) can be characterized into “boxes” of equipotent
sets. How cool!

10 More Information

A large part of this document follows [1], although we did change/simplify parts of it. The document more
or less contains a more verbose and thorough write-up of the things we went over (and likely a bunch more).
We recommend checking it out if interested.
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